
Efficient solutions for Mastermind

using genetic algorithms

Lotte Berghman, Dries Goossens, Roel Leus∗

ORSTAT, K.U.Leuven, Naamsestraat 69, 3000 Leuven, Belgium

Abstract

We present a new genetic algorithm for playing the game of Master-
mind. The algorithm requires low run-times and results in a low ex-
pected number of guesses. Its performance is comparable to that of
other meta-heuristics for the standard setting with four positions and
six colors, while it outperforms the existing algorithms when more col-
ors and positions are examined. The central idea underlying the algo-
rithm is the creation of a large set of eligible guesses collected through-
out the different generations of the genetic algorithm, the quality of
each of which is subsequently determined based on a comparison with
a selection of elements of the set.

Keywords: Mastermind, genetic algorithms, games.

1 Introduction

Mastermind is a game played by two players, the codemaker or encoder and
the codebreaker or decoder. The game begins with the codemaker select-
ing a secret code, a sequence of P colors (digits, pegs or other symbols)
s = (s1, s2, . . . , sP ) ∈ C ≡ {1, 2, . . . , N}P chosen from a set of N colors
(with repetitions allowed); we represent the different colors by the numbers
1, 2, . . . , N . The codebreaker will then try to guess the code by means of
a number of guesses gi = (gi1, gi2, . . . , giP ) ∈ C, i = 1, 2, . . .. After each
guess, the codemaker responds with two numbers Xi and Yi. The value Xi

is the number of exact matches, counting the number of times sp = gip,
p = 1, . . . , P . The second, the number of “near matches”, is the number of
digits of the guess which are the right color but in the wrong position. In
the real game, Xi is represented by black or red pegs, and Yi by white pegs.
At any stage throughout the game, we call a code c eligible or feasible if it
results in the same values for Xk and Yk for all guesses k that have been

∗Corresponding author. E-mail: Roel.Leus@econ.kuleuven.be.

1



played up till that stage, if c were the secret code; Ei is the set of eligible
codes after guess (i− 1) (with E1 ≡ C). The game ends when Xi = P .

It was the Israeli postmaster and telecommunications expert Mordecai
Meirowitz who invented Mastermind in 1970. The English company Invicta
Plastics Ltd. bought all the intellectual property rights and brought Mas-
termind on the market in 1972. Since then, over 55 million copies of the
popular game have been sold in more than 80 countries. Presently, a com-
mercial board game exists in two variants: “classic” Mastermind with four
positions and six colors, and “super” Mastermind with five positions and
eight colors. Moreover, a lot of internet and computer versions are available
and the game can also be played simply with pen and paper. Applications in
various disciplines, mostly related to artificial intelligence, are cited in Chen
et al. (1996), Goddard (2003) and Merelo-Guervós et al. (2006), including
adaptive search and computational learning with queries.

In this article we present a new genetic algorithm (GA) to play Mas-
termind. The prime objective function considered is the average number of
guesses needed to find the secret code, where the average is computed over a
number of games. The central idea underlying the algorithm is the creation
of a large set of eligible guesses collected throughout the different genera-
tions of the GA, the quality of each of which is subsequently determined
based on a comparison with a selection of elements of the eligible set. Note
that when N = 6 and P = 4, the entire dataset of all 64 = 1296 secret codes
is used for evaluation, while for higher values of N and P , a representative
dataset is usually constructed by random sampling.

The remainder of this article is structured as follows. First, we survey
the existing literature on algorithmic approaches to Mastermind in Section
2. Subsequently, we describe a new GA in Section 3, and we compare its
performance with some of the existing algorithms (Section 4). Finally, some
conclusions are presented in Section 5.

2 Literature review

We have subdivided the literature on algorithmic approaches to Mastermind
into three categories: full enumeration, rules of thumb and meta-heuristics.

2.1 Full enumeration

For each guess, full enumeration investigates all codes in C and retains
the code with the highest score on some objective function. With Knuth’s
(1977) “strategically optimal” algorithm, the decoder can always succeed in
five moves or less (4.478 on average) when P = 4 and N = 6. For each
guess, the decoder chooses the combination that minimizes the maximum
number of remaining eligible codes. Irving (1979) based his algorithm on
Knuth’s but minimizes the expected number of remaining codes; he needs

2



4.369 guesses on average. Norvig (1984) also proposes an algorithm similar
to that of Knuth, but only plays eligible guesses; he needs 4.47 guesses on
average.

Neuwirth (1982) develops a strategy for bringing down the number of
guesses to 4.3642, in which the next guess to be made depends on the re-
maining number of eligible codes. Koyoma & Lai (1994) use full enumeration
and reach an average of 4.34 moves (six in the worst case) to find the secret
code when playing with four positions and six colors. The authors are able
to reduce the search space by considering only one of a number of so-called
“case-equivalent” combinations. An obvious disadvantage of this algorithm,
shared with the other full-enumeration algorithms, is the run-time (needed
to enumerate all codes). Rosu (1999) also describes a full-enumeration al-
gorithm that is extremely time-intensive: when played with P = 4, N = 6,
the algorithm needs 15 hours and results in an average of 4.34 guesses. Kooi
(2005) proposes the “Most Parts Strategy”, which needs on average 4.373
guesses for P = 4 and N = 6. For each guess, this strategy chooses the code
that has the largest number of possible responses (Xi, Yi), given the set Ei.

Bestavros & Belal (1986) combine full enumeration with information the-
ory for the choice of the objective function and reach an average of 3.860
and 3.835 guesses for the strategies called “MaxMin” and “MaxEnt”, re-
spectively – but only for a sample of 500 games.

The recent article by Chen et al. (2007) proposes a variant on full enu-
meration via depth-first search, following the philosophy of beam search
(Russell & Norvig 2003), in which only a limited number of branches (the
most promising ones) is explored in each node of the search tree. For low to
high run-times (dependent on the number of explored branches), the average
number of guesses ranges from 4.385 to 4.359, with corresponding average
run-times of 1.25 and 993.2 seconds.

2.2 Rules of thumb

The aim of what we have called rules of thumb is different from the al-
gorithms discussed in the previous paragraph: the goal is now to obtain
good results in a short time. The simplest algorithm is probably the one
by Shapiro (1983), where the decoder constructs a list of the elements of C
in random order. For each guess, he starts from the last examined position
in the previous guess and continues the list until he finds an eligible code,
which will be his next guess. Swaszek (2000) proceeds similarly, but adopts
a list ordered in increasing index of the colors. He uses a fixed first guess
and needs 4.758 guesses on average for four positions and six colors.

Rosu (1999) also describes a rule of thumb using 4.64 trials on average
when played with P = 4 and N = 6, which only plays eligible codes. A
random combination is chosen for the first guess. For all subsequent guesses,
random codes are generated until a first eligible code is found, which is the

3



next guess. The average number of guesses grows linearly with N and P ,
while the computation time grows exponentially.

Temporel & Kovacs (2003) propose a new algorithm that minimizes not
only the average number of guesses but also the number of evaluated codes.
When played with P = 4 and N = 6, the algorithm needs an average of 4.64
trials and evaluates only 41.2 combinations on average, which is not even
four percent of all 1296 possible combinations.

2.3 Meta-heuristics

Bernier et al. (1996), Bento et al. (1999) and Kalisker & Camens (2003) all
propose a GA that uses a fitness value that reflects the eligibility. Bernier
et al. (1996) need an average of 5.62 guesses over 693 games when played
with N = P = 6. Bento et al. (1999) reach an average of 6.866 guesses when
played with P = 5 and N = 8. Their initial population contains 300 random
codes with P different colors. A certain fraction of the best elements of the
parent population replaces the corresponding number of worst elements of
the child population. Kalisker & Camens (2003) need 4.75 guesses on average
when played with P = 4 and N = 6, and 6.39 guesses when P = 5, N = 8.

Merelo-Guervós et al. (2006) develop an evolutionary algorithm that
needs 4.13 trials for P = 4 and N = 6, averaged over “in some cases, up to
1000, in other cases, only 100” runs, “dependent on N and P”. The first
guess always contains four different colors. Each generation contains 400
codes. The 50% worst combinations in each generation are eliminated and
substituted by the offspring resulting from the application of the genetic
operators to the remaining members of the population. When 15 genera-
tions are created without eligible code, the population is killed and a new
one generated. The average number of evaluated combinations is only 279,
which makes this a relatively fast method. Moreover, although the size of
the search space grows exponentially with N , the number of combinations
evaluated grows only linearly. When a feasible solution is found, it is imme-
diately played.

Ugurdag et al. (2006) present a population-based algorithm inspired by
the algorithms of Shapiro, Knuth and Kooi. The first two guesses are fixed.
For all subsequent guesses, only eligible codes are played. For each guess, a
population Êi ⊆ Ei is created, with the intention that the population Êi be
a good representation of Ei. Every c ∈ Êi is a candidate for the next guess;
for each such candidate, it is checked how it would partition the population
Êi if played as guess, each subset of the partition corresponding with one
answer (Xi, Yi). To this aim, each code in the population Êi is assumed to
be the secret code and the candidate is scored against it. The number of
non-empty subsets in the partition is the fitness value; a candidate c ∈ Êi

with highest fitness is selected as next guess. The average number of guesses
is 4.345 for P = 4 and N = 6, 6.169 for P = 5 and N = 8 and 7.079 for

4



P = 6 and N = 9.
Singley (2005) starts with a number of fixed guesses to discover the

number of occurrences of each color in the secret code, and then continues
with a tabu search algorithm. When played with P = 4 and N = 6, this
algorithm requires on average 5.736 guesses. This number increases linearly
with the size of the problem, while the search time increases exponentially.
The fitness score of a code is a function of the responses for the previous
guesses. The search for a new guess starts from the last-played guess, in
which two randomly chosen positions are swapped and added to the tabu
list. If a chosen pair is already in the list and the new combination is eligible,
then the score after making the swap is compared to the best score obtained
so far and replaces the latter when the new score is better. A pair that is
not yet in the tabu list is swapped, whether it is an improvement over the
current combination or not. This procedure continues until an eligible code
is obtained.

3 A new genetic algorithm

A number of well-performing algorithms, e.g. the one by Merelo-Guervós
et al. (2006), simply play any feasible code as soon as one is found. Merelo-
Guervós et al. (2006) point out that an interesting avenue for further research
would be to evaluate each code not only by considering feasibility but also by
its predictive power. It is exactly such an improvement that we investigate
in this article.

In this section, we present our new algorithm with an embedded GA,
where a large set of eligible codes is collected throughout the different gen-
erations. The quality of each of these codes is determined based on a compar-
ison with a selection of elements of the eligible set. We present an overview
of the game and the global steps of the GA as Algorithm 1, and provide
details on some key design and implementation issues in the remainder of
this section.

As initial guess g1, we use a fixed code. For the case with four positions
and six colors, we obtain the best results with g1 = (1, 1, 2, 3), although
the influence of this choice on the performance is limited. Nevertheless, this
initial guess reduces the average number of guesses required to break the
code by 0.02 compared to g1 = (1, 1, 2, 2), which is suggested by Knuth
(1977) and used by Merelo-Guervós et al. (2006).

From the second move onwards, the guess that is played is determined by
the actual GA. Throughout this article, we use a population of size 150. This
population is initialized randomly, taking into account that every code in
the population should be distinct. Subsequent generations of the population
are created through 1-point or 2-point crossover (each with a probability of
0.5) from two parents of the previous generation. With a probability of

5



Algorithm 1 A new genetic algorithm
Set i = 1;
Play fixed initial guess g1;
Get response X1 and Y1;
while Xi 6= P do

i = i + 1;
Set Êi = {} and h = 1;
Initialize population;
while (h 6 maxgen AND |Êi| 6 maxsize) do

Generate new population using crossover, mutation, inversion and permu-
tation;
Calculate fitness;
Add eligible combinations to Êi (if not yet contained in Êi);
h = h + 1;

end while
Play guess gi ∈ Êi;
Get response Xi and Yi;

end while

0.03, the crossover is followed by a mutation that replaces the color of one
randomly chosen position by a random other color. Furthermore, there is a
0.03 chance of permutation, where the colors of two random positions are
switched. Finally, there is a 0.02 chance of inversion, in which case two
positions are randomly picked, and the sequence of colors between these
positions is inverted. When these procedures lead to a code that is already
present in the population, it is replaced by a completely new solution that is
constructed in a way that aims to improve the diversity of the population:
each digit receives a value from the set {1, 2, . . . , N}, where each value has
the same probability 1

N of being selected.
The probability for a code to be selected as a parent is proportional to

its fitness value. In order to compute the fitness value of a chromosome c,
we compare it with every previous guess gq by determining the number of
black pins X ′

q(c) and the number of white pins Y ′
q (c) that the code c would

score if the previous guess gq were the secret code. The difference between
X ′

q and Xq and between Y ′
q and Yq is an indication of the quality of the code

c; if these differences are zero for each previous guess gq then the code is
eligible.

For the fitness value, it would seem logical to give a larger relative weight
a to the difference in black pins than to the difference in white pins, since a
black pin is a better result than a white one. Our experiments show, how-
ever, that the best result is obtained when black and white pins receive the
same weight (see Table 1). The reason for this could be that our algorithm
plays an eligible code at each turn. When infeasible codes could be played as
well, it would probably be better to associate a higher weight with the black
pins, since in this way the codes that are closer to an eligible code obtain a
higher fitness value. In order to slick the values of the fitness function, a con-

6



a = 1 4.607 b = 1 4.605
a = 2 4.608 b = 2 4.600
a = 3 4.652 b = 3 4.606

Table 1: Average number of guesses for different values for a and b.

stant is added, proportional to the number of positions P and the number
of played turns i. This term is multiplied by a weight b, which determines
the relative importance of this term compared to the number of black and
white pins. Experimental results show that the best result is obtained for
b = 2 (see Table 1). This results in the following fitness function f :

f(c; i) = a




i∑

q=1

|X ′
q(c)−Xq|


 +

i∑

q=1

|Y ′
q (c)− Yq|+ bP (i− 1).

For each guess to be made, at most maxgen generations are created by
the GA. The eligible codes in each generation are added to the set Êi (if
they are not yet contained in that set); the next guess will be chosen out
of Êi. In line with Ugurdag et al. (2006), we assume that the set Êi is a
good representation of Ei. Our approach differs from that of Ugurdag et al.
in that we use a GA for creating the “sample” Êi, whereas Ugurdag et al.
resort to the selection of one feasible solution (using a variant of Shapiro’s
algorithm) from each subset of a partition of C. This partition is such that
each of the subsets contains solutions that are conveniently spread over C
(so that different values occur for each of the digits).

Although harmful to the objective function, we limit maxgen and the
size of Êi in order to restrict the computation time. We find that a good
balance is struck with maxgen = 100 and |Êi| = 60 (see Table 2). Without
the cardinality restriction, |Ê2| is about 250 on average, which decreases to
55 for |Ê3|, only 12 for |Ê4|, and even less for possible subsequent guesses.
We conclude that our restriction on the cardinality of Êi tends to constrain
the number of candidate eligible codes only for the second guess.

Finally, we need to decide which of the eligible codes in Êi will be our
next guess. Ideally, one would want to play the eligible code that leads to
the least remaining eligible codes after it has been played. However, as the
search space increases, finding this code becomes quite time-intensive, and
we therefore resort to alternatives that demand less computational effort.

|Êi|=50 4.656
|Êi|=60 4.653
|Êi|=70 4.650

Table 2: Average number of guesses for different values of |Êi|.

7



Average number of guesses Computation time
Random 4.59 0.762 sec
Similar 4.47 0.741 sec
Different 5.12 0.895 sec

Table 3: Average number of guesses for three selection rules.

First, we look into the influence of playing a code that is most similar to
other codes in Êi, compared to playing that code that differs most from all
other codes in Êi, or just playing a randomly selected element from that set.
The underlying idea is that similarity to other eligible codes is a proxy for
the number of eligible secret codes that will remain after playing that code.
More specifically, for each c ∈ Êi, we determine the number of black and
white pins if c were the guess and another c∗ ∈ Êi the secret code, for each
c∗ ∈ Êi \{c}. These values are summed over all c∗ ∈ Êi \{c}, and the black
and white pins receive equal weight. The resulting total score measures to
what extent each code resembles the other codes in Êi. Our experiments
show that better results are obtained when the code that is the most similar
to the others is played (see Table 3).

Some algorithms discussed in Section 2 base their score on the possible
responses (Xi, Yi), on the probability that these responses will be obtained
and/or on the number of eligible codes that remain after playing a code. As
a second alternative, we adopt this global viewpoint as follows: the quality
of an eligible code c ∈ Êi is evaluated by means of an estimate of the number
of remaining eligible codes if c is the next guess. This estimate is obtained
by considering only a random selection S ⊆ Êi: for each candidate guess
c ∈ Êi and each c∗ ∈ S\{c} functioning as possible secret code, it is checked
how many other codes in S \ {c, c∗} would remain eligible. The candidate
c with minimum average number of remaining eligible codes is picked. Our
experiments show that even for small selections S, the approach is valuable,
in that the obtained result is better than the result after using a random
selection. It is obvious that as |S| increases, the solution quality also rises,
but so do the computation times. Table 4 shows that the highest-quality
results are obtained when the selection S equals Êi.

|S| Average number of guesses Computation time
30 4.431 0.596 sec
40 4.42 0.597 sec
50 4.417 0.61 sec
60 4.39 0.614 sec

Table 4: Average number of guesses and computation time for various
sizes of the set S.

8



Algorithm Average Maximum number of guesses
Knuth 4.478 5
Norvig 4.47 6
Chen et al. (2007) (1) 4.385 6
Kooi 4.373 6
Irving 4.369 6
Neuwirth 4.3642 6
Chen et al. (2007) (20) 4.359 6
Koyama and Lai 4.34 5
Rosu 4.34 -
Bestavros and Belal (MaxMin) 3.86* -
Bestavros and Belal (MaxEnt) 3.835* -
New GA 4.39 7

Table 5: Results for full enumeration with P = 4 and N = 6; an asterisk
‘*’ indicates that only a subset of the 64 codes was considered for obtaining
this result.

Both of the foregoing proposals for choosing a guess from Êi obtain
better results than a random selection. It turns out that the second method
(pursuing the least remaining eligible codes) does better than the approach
based on similarity. Consequently, the second alternative is retained and
implemented in the final version of the algorithm, which is used throughout
Section 4.

4 A comparison with existing algorithms

In this section, a number of the algorithms available in the literature are
compared with our new algorithm, and this for different datasets (different
combinations of values for P and N). Our algorithm has been coded1 in
Borland Delphi 6 using Microsoft Visual Studio 2005. The experiments were
run on a Dell Inspiron 1150 with an Intel Pentium-4 2.8-GHz processor and
512 MB RAM, equipped with Windows XP Professional.

4.1 P = 4 and N = 6

For this dataset we report the average number of guesses as well as the
maximum number of guesses, for the algorithms that we have implemented
ourselves and for those for which the reference text mentions this value.
To evaluate the performance of the different algorithms for larger instances
(higher values of P and/or N), we perform sampling instead of averaging

1Our source code is available on the webpage
http://www.econ.kuleuven.be/public/NDBAC96/mastermind.htm.

9



Algorithm Average Maximum number of guesses
Shapiro 4.78 8
Swaszek 4.758 9
Rosu 4.64 8
Temporel and Kovacs 4.64 -
New GA 4.39 7

Table 6: Results for rules of thumb with P = 4 and N = 6.

Algorithm Average number of guesses
Singley 5.736
Kalisker and Camens 4.75
Ugurdag et al. 4.345
Merelo-Guervós et al. 4.13*
New GA 4.39

Table 7: Results for meta-heuristics with P = 4 and N = 6; an asterisk ‘*’
indicates that only a subset of the 64 codes was considered for obtaining
this result.

over the entire dataset (mainly because the dataset simply contains too
many instances). For these datasets, the statistic “maximum number of
guesses” loses most of its information, since the more samples are drawn
and examined, the higher the probability of obtaining extreme values. We
have consequently included the second statistic only for the dataset with
P = 4 and N = 6.

Table 5 shows that all full-enumeration algorithms obtain good results,
comparable to the algorithm proposed in this text. When the number of po-
sitions and colors increases, however, the computation time of these methods
will increase more than linearly because all combinations are evaluated one
by one. Consequently, this type of algorithms will certainly not be preferred
for larger problems. The algorithm by Chen et al. (2007) takes the number
of branches explored in each node of the search tree as input parameter,
which is indicated between round brackets. Bestavros & Belal (1986) seem
to obtain the best performance of all the algorithms appearing in the liter-
ature. The results of the new GA are obtained as the average number of
guesses after playing each of the 1296 games three times. All other results
in this section are copied from the literature.

From Table 6 we observe that the results of the rules of thumb proposed
by Shapiro (1983), Swaszek (2000), Rosu (1999) and Temporel & Kovacs
(2003) are also comparable to our new GA. Finally, Table 7 contains the
outcomes of a number of meta-heuristics. Merelo-Guervós et al. (2006)
report the best results in this category, but a direct comparison may not
be appropriate since their average was not computed over the same dataset.

10



Algorithm Average number of guesses
Bento et al. 6.866
Kalisker and Camens 6.39
Ugurdag et al. 6.169
Merelo-Guervós et al. 5.904
New GA 5.618

Table 8: Results for meta-heuristics with P = 5 and N = 8.

Singley (2005) needs significantly more guesses on average, probably because
of the number of fixed guesses needed to discover the number of occurrences
of each color. None of these references mentions the maximum number of
guesses needed.

4.2 P = 5 and N = 8

A number of meta-heuristics in the literature present results for the dataset
corresponding with P = 5 and N = 8; a summary is depicted in Table 8.
For the new GA, our first guess is g1 = (1, 1, 2, 3, 4). The best results are
obtained by our new GA.

The reader should note that for this dataset as well as for all those dis-
cussed infra, all averages are computed by considering only a representative
sample of the entire dataset. The results of the new GA are obtained as
the average number of guesses after playing 500 games with randomly gen-
erated secret codes. All other results are copied from the literature. All
articles that clearly state the number of games played for objective-function
evaluation also opt for 500 games.

4.3 P = 6 and N = 9

For this dataset we have adopted a first guess of g1 = (1, 1, 2, 2, 3, 4) and
increased |Êi| and |S| so that |Êi| = |S| = 80. No further parameter tuning
is performed, so all other parameters and settings remain the same as for
the standard dataset with P = 4, N = 6. We have implemented a few
algorithms to be able to compare the results of the new GA for this dataset

Algorithm Average number of guesses Computation time
Swaszek (first move random) 7.41 1.866 sec
Ugurdag et al. 7.079
Shapiro 6.76 1.087 sec
Rosu 6.67 1.282 sec
New GA 6.475 1.284 sec

Table 9: Results for P = 6 and N = 9.

11



Algorithm Average number of guesses Computation time
Swaszek (first move random) 9.2 30 min 31 sec
Rosu 8.577 25 min 44 sec
New GA 8.366 20.571 sec

Table 10: Results for P = 8 and N = 12.

to more than only the algorithm of Ugurdag et al. (2006). The averages
for the different algorithms are quite close to one another (see Table 9).
The average computation time needed by Shapiro’s (1983) algorithm seems
to be a bit shorter, but that is a consequence only of the fact that in this
implementation, the generation of a list with all possible combinations in a
random order is done beforehand.

The result of Ugurdag et al. (2006) is copied from the reference. All
other results are obtained as the average number of guesses after playing
500 games with randomly generated secret codes.

4.4 P = 8 and N = 12

A few slight changes are made for this dataset: we adapt the first guess to
g1 = (1, 1, 2, 2, 3, 3, 4, 5) and increase the parameters |Êi|, |S| and maxgen
so that |Êi| = |S| = 100 and maxgen = 200. Table 10 shows that Rosu
(1999) does quite well as far as the average number of guesses is concerned,
but this at expense of very high run-times. The result for the algorithm by
Swaszek (2000) is a bit worse for the number of guesses as well as for the
calculation time. Both of these algorithms are outperformed by our new
GA with respect to the number of guesses, and this with considerably lower
computation times.

The results for Rosu and Swaszek and the result of the new GA are
obtained as the average number of guesses after playing respectively 50 and
100 games with randomly generated secret codes. For Shapiro’s algorithm
the entire list of elements of C needs to be stored in memory before the start
of the actual game, and this would result in an inordinately large occupation
of computer memory for P = 8, N = 12, which is the reason why we have
not applied the algorithm to this dataset.

4.5 Conclusion

By way of conclusion, the same three algorithms that were considered for
P = 8 and N = 12 are compared in Tables 11 and 12 over the different
datasets. The ranking of the algorithms based on the average number of
guesses is the same for all the datasets. On the other hand, the run-times
of Rosu (1999) and Swaszek (2000) exhibit a considerably faster growth
rate than the new GA. Our new algorithm is more time-consuming for low

12



Algorithm 4;6 6;9 8;12
Swaszek (first move random instead of fixed) 4.768 7.41 9.2
Rosu 4.64 6.67 8.577
New genetic algorithm 4.39 6.475 8.366

Table 11: Average number of guesses for different datasets.

Algorithm 4;6 6;9 8;12
Swaszek (first move random) 0.001 sec 1.866 sec 30 min 31 sec
Rosu 0.001 sec 1.282 sec 25 min 44 sec
New genetic algorithm 0.614 sec 1.284 sec 20.571 sec

Table 12: Average CPU-time for different datasets.

values of P and N , but the computational effort rises only slightly for larger
instances, while the other algorithms are clearly less preferable for higher P
and N .

5 Summary

In this article we have presented a new genetic algorithm for playing the
game of Mastermind, which requires low run-times and results in a low
expected number of guesses. A number of well-performing algorithms, e.g.
the one by Merelo-Guervós et al. (2006), simply play any feasible code as
soon as one is found. Merelo-Guervós et al. point out that an interesting
avenue for further research would be to evaluate each code not only by
considering feasibility but also by its predictive power. It is exactly such
an improvement that we investigate in this article. We do need to point
out to the reader that since we use a meta-heuristic that does not perform
a systematic search of the solution space, (unnecessarily) long run-times
cannot entirely be excluded, although we are confident that our algorithm
will only very rarely exhibit such undesirable behavior; this is confirmed by
our computational experiments.

The central idea underlying our solution procedure is the creation of a
large set of eligible guesses collected throughout the different generations of
the genetic algorithm, the quality of each of which is subsequently deter-
mined based on a comparison with a selection of elements of the set. We
have evaluated the algorithmic performance by means of comparisons with
a number of existing algorithms and observe that its performance is com-
parable to that of other meta-heuristics for the standard setting with four
positions and six colors, while it outperforms the existing algorithms when
more colors and positions are considered.

13



References

Bento, L., Pereira, L. & Rosa, A. (1999). Mastermind by Evolutionary
Algorithms, in SAC ’99: Proceedings of the Sixth Annual Workshop on
Selected Areas in Cryptography, Kingston, Ontario, Canada, pp. 307–
311.

Bernier, J., Herráiz, C., Merelo-Guervós, J., Olmeda, S. & Prieto, A. (1996).
Solving MasterMind using GAs and simulated annealing: A case of dy-
namic constraint optimization, in PPSN IV: Proceedings of the 4th
International Conference on Parallel Problem Solving from Nature,
Springer-Verlag, London, UK, pp. 554–563.

Bestavros, A. & Belal, A. (1986). MasterMind: A game of diagnosis strate-
gies, Bulletin of the Faculty of Engineering, Alexandria University,
Alexandria, Egypt.

Chen, S., Lin, S., Huang, L. & Hsu, S. (2007). Strategy optimization for
deductive games, European Journal of Operational Research 183: 757–
766.

Chen, Z., Cunha, C. & Homer, S. (1996). Finding a hidden code by ask-
ing questions, in COCOON ’96: Computing and Combinatorics, Pro-
ceedings of the Second Annual International Conference, Hong Kong,
pp. 50–55.

Goddard, W. (2003). A computer/human Mastermind player using grids,
South African Computer Journal 30: 3–8.

Irving, W. (1979). Towards an optimum Mastermind strategy, Journal of
Recreational Mathematics 11(2): 81–87.

Kalisker, T. & Camens, D. (2003). Solving Mastermind using genetic algo-
rithms, in GECCO ’03: Proceedings of the Genetic and Evolutionary
Computation Conference, Chicago, USA, pp. 1590–1591.

Knuth, E. (1977). The computer as Master Mind, Journal of Recreational
Mathematics 9: 1–6.

Kooi, B. (2005). Yet another mastermind strategy, ICGA Journal 28(1): 13–
20.

Koyoma, K. & Lai, W. (1994). An optimal Mastermind strategy, Journal of
Recreational Mathematics 25: 251–256.

Merelo-Guervós, J., Castillo, P. & Rivas, V. (2006). Finding a needle in a
haystack using hints and evolutionary computation: the case of evolu-
tionary MasterMind, Applied Soft Computing 6(2): 170–179.

14



Neuwirth, E. (1982). Some strategies for MasterMind, Zeitschrift für Oper-
ations Research 26: 257–278.

Norvig, P. (1984). Playing Mastermind optimally, SIGART Bulletin
(90): 33–34.

Rosu, R. (1999). Mastermind, Master’s thesis, North Carolina State Uni-
versity, Raleigh, North Carolina.

Russell, S. & Norvig, P. (2003). Artificial Intelligence: A Modern Approach,
Prentice Hall.

Shapiro, E. (1983). Playing Mastermind logically, SIGART Bulletin
(85): 28–29.

Singley, A. (2005). Heuristic solution methods for the 1-dimensional
and 2-dimensional Mastermind problem, Master’s thesis, University of
Florida.

Swaszek, P. (2000). The mastermind novice, Journal of Recreational Math-
ematics 30: 193–198.

Temporel, A. & Kovacs, T. (2003). A heuristic hill climbing algorithm for
Mastermind, in UKCI ’03: Proceedings of the 2003 UK Workshop on
Computational Intelligence, Bristol, United Kingdom, pp. 189–196.

Ugurdag, H., Sahin, Y. & Baskirt, O. (2006). Population-based FPGA
solution to Mastermind game, AHS ’06: Proceedings of the First
NASA/ESA Conference on Adaptive Hardware and Systems, pp. 237–
246.

15


