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This paper presents a systematic model, two-phase optimization algorithms (TPOA), for Master-

mind. TPOA is not only able to efficiently obtain approximate results but also effectively discover

results that are getting closer to the optima. This systematic approach could be regarded as a

general improver for heuristics. That is, given a constructive heuristic, TPOA has a higher

chance to obtain results better than those obtained by the heuristic. Moreover, it sometimes can

achieve optimal results that are difficult to find by the given heuristic. Experimental results show

that (i) TPOA with parameter setting (k, d)5 (1, 1) is able to obtain the optimal result for the

game in the worst case, where k is the branching factor and d is the exploration depth of

the search space. (ii) Using a simple heuristic, TPOA achieves the optimal result for the game in

the expected case with (k, d) 5 (180, 2). This is the first approximate approach to achieve the

optimal result in the expected case.
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1. INTRODUCTION

Deductive games are two-player zero-sum games of imperfect

information. Player I, called the codemaker, chooses a secret

code. Player II, the codebreaker, does not know the choice

player I made and has to guess the secret code. After each

guess, Player II will get a hint about the accuracy of the

guess from Player I. The goal of Player II is to discover the

secret code, according to the hints, in the fewest number of

guesses.

The game of Mastermind [1] is a well-known deductive

game. In general, the Mastermind Satisfiability Problem is

NP-complete [2]. A secret code consists of four pegs out of

six possible colors. Repeated colors are allowed, so the

number of possible secret codes is 64 ¼ 1296. A hint consists

of black and white pegs; a black peg means that a peg in the

codebreaker’s guess is correct in both position and color; a

white peg means that a peg in the guess is correct in color

but not in position; and finally, no pegs means that there are

no pegs in the guess, which are correct in color. Now we

restate the game with a more precise description. The code-

maker chooses a secret code (s1, s2, s3, s4). After each guess

(g1, g2, g3, g4) made by the codebreaker, the codemaker

responds with a pair of numbers [B, W]. The symbols, B and

W, denote the number of black pegs and white pegs, respect-

ively. More precisely, B ¼ jfi: si ¼ gigj and W ¼
P

j¼ 1
6 min

(pj, qj) 2 B, where pj ¼ jfi: si ¼ jgj and qj ¼ jfi: gi ¼ jgj. For

example, if the secret code is (1, 4, 4, 3) and the guesses are

(3, 1, 5, 4) and (4, 1, 4, 5), then the responses are [0, 3] and

[1, 2], respectively.

Merelo et al. [3] transferred the optimal strategy for Master-

mind game to a combinatorial optimization problem. It

resembles other computational problems such as circuit

testing, differential cryptanalysis, on-line models with equiv-

alent queries and additive search problems. For the example

of differential cryptanalysis, playing the game is similar to

submit combinations of letters in an alphabet to a ‘black

box’ encrypting device, and the encrypted output is analysed

to crack the key; the problem is to compute a set of combi-

nations that allow players to extract maximal information

from the ‘black box’.

Over the past three decades, much research has been done

on this kind of game. Knuth [1] demonstrated a strategy for

the Mastermind game that requires at most five guesses in

the worst case and 4.478 in the expected case. The strategy

is to choose the guess that minimizes the maximum number

of remaining candidates at every stage. Later, Irving [4] and

Neuwirth [5] used sophisticated heuristic strategies to
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improve the bound in the expected case to 4.369 and 4.364,

respectively. Finally, Koyama and Lai [6] used an exhaustive

depth-first search on a supercomputer to determine the

optimal strategy for Mastermind, where the expected number

of guesses is 4.34. Variants of the Mastermind game have

been studied in [7, 8]. Furthermore, in [3, 9, 10], the authors

used evolutionary algorithms and genetic algorithms to solve

related problems. Roche [11] proved that the number of

guesses needed is O(M(log(logM))), whereM is the number of

pegs. Kabatianski, Lebedev and Thorpe [12] investigated the

Mastermind game and its related applications based on coding

theory. More recently, a graph-partition approach was intro-

duced to determine the optimal strategies for various games

with two-digit secret code [13]. Barteld [14] analysed four well-

known strategies and presented a novel heuristic strategy for the

game, where the expected number of guesses is 4.373.

Algorithms that deal with this kind of problems can be

classified as either complete or approximate algorithms [15].

Complete algorithms, such as A* and branch-and-bound, are

guaranteed to find an optimal solution; however, they might

need exponential computation time in the worst case. This

often leads to a high computation time for practical purposes.

Thus, the use of approximate methods has received more and

more attention in the last three decades. Approximate algori-

thms sacrifice the guarantee of finding optimal solutions for

the sake of getting feasible solutions in a significantly

reduced amount of time.

Approximate methods usually are distinguished between

constructive methods and local search methods. Constructive

methods generate solutions from the scratch by adding com-

ponents (or called moves) until a solution is complete. On

the other hand, local search methods start from some initial

solution and iteratively try to replace the current solution by

a better solution. However, both methods may easily be

trapped into local optima.

To escape from local optima, a new kind of approximate

algorithms has emerged in the past three decades. These algor-

ithms try to combine basic heuristic methods in a higher-level

framework aimed at efficiently and effectively exploring a

search space. Examples of these algorithms based on local

search are genetic algorithms [16], simulated annealing [17],

Tabu search [18, 19], Ant Colony optimization [20] and iter-

ated greedy [21]. On the other hand, examples of algorithms

based on constructive methods are iterative sampling [22],

HBSS [23], sampling and clustering [24], selective-sampling

simulation [25], adaptive sampling [26, 27], GRASP [28,

29], block search [30] and Monte-Carlo tree search [31].

The main difference between these algorithms is the mechan-

isms used to guide the tree search. Due to the problem of huge

search space, however, no approximate algorithm developed

has achieved the optimal result for the Mastermind game in

the expected case.

In this paper, we propose an approximate algorithm based

on constructive methods, called two-phase optimization

algorithms (TPOA). TPOA introduces a systematic mechan-

ism to approach global optima for Mastermind.

This paper is organized as follows. Section 2 formulates the

optimization problems for deductive games. The general

structure of TPOA is introduced in Section 3. In Section 4,

we demonstrate how to apply TPOA to solve the game of

Mastermind. Comparison results for different methods are

given in Section 5. Section 6 contains our concluding remarks.

2. OPTIMIZATION PROBLEMS FOR DEDUCTIVE
GAMES

Optimization problems for deductive games are classified into

two categories, i.e. to find an optimal strategy for the games in

the worst case and in the expected case. Optimal strategies for

these two cases can be defined as follows.

(i) An Optimal strategy in the worst case is a strategy that

minimizes the maximum number of guesses required to

discover an arbitrary secret code given by the

codemaker.

(ii) An Optimal strategy in the expected case is a strategy

that minimizes the total number of guesses required

to discover all possible secret codes, assuming a

uniform distribution over the possible secret codes.

We now introduce some properties of deductive games by a

simple number guessing game, denoted 1 � N games [32].

Figure 1 shows a game tree for a 1 � 16 game. From the

game tree, we can easily obtain the following two obser-

vations, which show how to derive the number of guesses

required in the two cases. These observations can be applied

to analyse other deductive games.

Observation 1. The number of guesses required in the worst

case for a game is n, where n is the height of the game tree, i.e.

the length of a longest path from the root to a leaf in the game

tree. For example, n ¼ 5 in Fig. 1.

Observation 2. The number of guesses required in the

expected case for a game is L/N, where L is the external

path length [33] of the game tree, i.e. the sum of the distances

from the root to each leaf in the game tree. For example, in

Fig. 1, L ¼ 1 � 1 þ 2 � 2 þ3 � 4 þ 4 � 8 þ 5 � 1 ¼ 54

and the number of guesses required in the expected case is

L/N ¼ 54/16 ¼ 3.375.

We now investigate how large the search space is for a

deductive game. For a game tree with height n and branching

factor b, the search space will be bn. For a deductive game, the

branching factor for each move depends on the number of

possible responses r and possible codewords c of the game.

Accordingly, the branching factor b ¼ r � c, and hence, the

search space for a game with M pegs out of N colors, i.e. an

M � N game, is equal to (r � c)n, where r ¼ (M2
þ 3M)/2

and c ¼ NM. Therefore, the search space for an M � N game

is (NM(M2
þ 3M)/2)n. For example, the search space for the
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game of Mastermind is (64(42 þ 12)/2)n ¼ (1296 � 14)n,

where n ¼ 5 according to the strategy proposed by Knuth

[1]. In Section 4, we will apply TPOA to solve deductive

games. The search space will be reduced to a manageable size.

3. THE TWO-PHASE OPTIMIZATION ALGORITHM

TPOA is an approximate algorithm for solving Mastermind

and is able to discover results with higher quality. We can

also think of TPOA as a general improver for heuristic strate-

gies. That is, given a heuristic, TPOA has higher chance to

obtain results better than those obtained by the heuristic.

Moreover, it sometimes can achieve optimal results that are

difficult to find by the given heuristic.

3.1. Related research

The fundamental ideas of TPOA are (i) to combine multi-way

search and sampling and (ii) the utilization of clustering tech-

niques. Similar ideas have been employed in previous studies.

The sampling techniques are mechanisms trying to guide

the tree search to areas that seem to contain promising

solutions. In GRASP [28, 29], the next component is chosen

at random from a candidate list, which keeps the best-ranked

solution components according to a greedy function. HBSS

[23] makes use of a node-ordering heuristic to guide search

in a tree. The probability of choosing a next move is deter-

mined by a bias function. SAGE [26] uses random sampling

techniques as a heuristic during beam search. The heuristic

estimates the fitness of internal nodes by performing a

random sampling from the node to a leaf. Selective-sampling

simulation [25] and Monte-Carlo tree search [31] use on-line

simulation results to guide the tree search. Adaptive probing

[27] proposes a learning model during the search, which

uses the gradient decent method to update the estimated cost

of a leaf. Instead of using randomized-based [23, 26, 28,

29], simulation-based [25, 31] or learning-based [27] sampling

schemes, TPOA uses deterministic heuristics cooperated with

clustering techniques to guide the multi-way tree search. The

higher-ranked branches will be explored during the search.

Besides, the number of branches to be explored in TPOA

could be tuned according to the solution quality required, as

well as the time and space allowed.

Similar clustering techniques are employed in sampling and

clustering [24] and block search [30]. Sampling and clustering

[24] uses clustering rules based on the idea of distance

between points, to identify clusters of initial points which

would lead to the same local optimum. Block search [30] is

a complete search algorithm, which takes advantage of the

relative independence between parts of a solitaire card

game. It improves on depth-first search by grouping several

positions in a block, and searching only on the boundaries of

the blocks. Rather than clustering rules [24] and independence

analysis [30] required, TPOA could take advantage of the

existing heuristics and design a corresponding hash function

to perform the clustering.

3.2. The structure of TPOA

The search tree of TPOA, abbreviated to TPOA tree, is divided

into two phases, exploration and exploitation. The objective of

exploration phase is to discover promising partial solutions;

on the other hand, the exploitation phase is to choose the

way that leads each of the partial solution to a ‘best’ complete

solution. Two parameters, the branching factor k and the

exploration depth d, are used to decide how large the search

space TPOA intends to explore. That is, the parameters deter-

mine how many potential (promising) solutions that TPOA

will exploit. We denote TPOA with the branching factor k

and the exploration depth d as TPOAþ (k, d). The TPOAþ

(k, d) tree is shown in Fig. 2a. Given a TPOA tree with arbi-

trary height n, after level d the algorithm does a greedy

search from that node on. The number of potential solutions

exploited in a TPOAþ (k, d) tree will be kd.

FIGURE 1. A game tree for a 1 � 16 game, where the binary search strategy is used [32].
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Taking advantage of the concept of ‘annealing’, the branch-

ing factor k in TPOA could be evenly decreased at each des-

cending level. We define this construction of algorithm as

TPOA* (k, d). That is, in TPOA* (k, d) the branching

factors at levels 1, 2, . . ., i, . . ., and d are k, bk � (d 2 1)/dc,

bk � (d 2 2)/dc, . . ., bk � (d 2 i þ 1)/dc, . . ., and bk � 1/dc,

respectively. Therefore, the number of potential solutions

exploited by TPOA* (k, d) is

Yd
i¼ 1

k � i

d

� �� �
�

Yd
i¼ 1

k � i

d

� �� �
¼ kd �

d!

dd
; ð1Þ

which is much smaller than kd. The search tree for TPOA*

(k, d) is shown in Fig. 2b. The two constructions of TPOA

have been implemented for solving the game of Mastermind.

A comparison of experimental results for these two construc-

tions will be given in Section 5.

We now describe the structure and properties of TPOA.

Given the parameters (k, d), the sketch of a recursive pro-

cedure for TPOA is shown in Fig. 3.

TPOA can be implemented by a modified exhaustive depth-

first search on a TPOA tree. The main modification to depth-

first search is that at each visited node in the exploration phase

(with depth d), we consider only b branches and ignore other

branches. In Fig. 3, lines 3–5 show the variations of branching

factor b in TPOAþ and TPOA*. In the exploration phase,

TPOAþ has a fixed b ( ¼ k), but the value of b in TPOA*

is evenly decreased at descending levels, as shown in lines 3

and 4. In the exploitation phase, both TPOAþ and TPOA*

have a fixed b ¼ 1, as shown in line 5. Therefore, TPOAþ

(k, d) [or TPOA*(k, d)] is able to prune a huge search space

FIGURE 2. Search trees of different constructions for TPOA. (a) TPOAþ (k, d) tree. (b) TPOA*(k, d) tree. The number of solutions exploited are

kd and kd � d!/dd, respectively.

FIGURE 3. The sketch of TPOA.
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to a manageable size kd (or kd � d!/dd) as shown in Fig. 2. For

Mastermind, since the 14 response nodes at each level should

be kept, the search space is reduced to (14 k)d or (14)d � kd �

d!/dd.

Given two constants (k, d), the time complexity of TPOAþ

(k, d), in terms of number of nodes exploited, is kd (n2d),

where n is the height of the game tree, i.e. the number of

guesses required in the worst case. Roche [11] proved that

the number is O(M(log(logM))), where M is the number of

pegs. This means that no matter how large an instance of a

problem is given, TPOA can always obtain an approximate

result by appropriately selecting the parameters (k, d). Further-

more, depending on the execution time and space allowed, we

can increase the value of parameters (k, d) to approach the

optimal result. Now, we summarize the fundamental com-

ponents of TPOA as follows: a constructive heuristic for the

problem at hand; a hash function according to the heuristic;

two parameters (k, d) to decide how large the search space

TPOA intends to explore.

3.3. Hash collision groups

In TPOA, how to select the (most likely) best b next potential

components is a critical issue. The problem can be effectively

and efficiently solved by a clustering approach. TPOA per-

forms clustering using a concept of hash collision groups

(HCG) [34]. The next potential components of solutions

with similarity are clustered together in an HCG by a given

hash function to the problem at hand. That is, the potential

components with the same hash value will be clustered

together. Sections 4 and 5 will give detail examples of how

the clustering mechanism works. We now describe properties

of HCGs. Figure 4 illustrates the relation between HCGs and

equivalent classes in a search space of next potential com-

ponents. There are several advantages of using HCGs in

TPOA. The important properties of HCGs include:

(i) For two components in the same HCG, they are most

likely equivalent. On the other hand, for two equivalent

components, they are definitely in the same HCG.

(ii) Given a hash function, it is efficient to obtain the b best

HCGs.

(iii) Without losing the generality, an arbitrary component

can be chosen to represent its HCG.

Therefore, TPOA is able to efficiently and effectively select

the b ‘best’ representatives among all next potential com-

ponents. On the other point of view, if an evaluation function

is used in TPOA, each HCG can be regarded as a set of the

next potential components which have a tie on the return

value of the function. Note that most ties are equivalent but

equivalent solutions will produce ties.

4. TPOA FOR THE GAME OF MASTERMIND

In this section, we will apply TPOAs to a popular deductive

game, Mastermind. Two hash functions are designed for

optimization problems of the game in the worst case and the

expected case, respectively. Furthermore, both TPOAþ (k, d)

and TPOA* (k, d) are applied to solve the problems.

4.1. TPOA for the game in the worst case

From Observation 1, we have to minimize the height of the

game tree so as to obtain the optimal strategy for the game

in the worst case. To achieve this goal, we employ the follow-

ing simple heuristic, which is modified from Knuth’s [1].

Heuristic for the game in the worst case. Minimize the

number of remaining candidates for the largest response

classes after each guess. There are 14 response classes for

the game as shown in Table 1.

According to the heuristic, we design the corresponding

hash function as follows:

Hash function for the game in the worst case. Let the

number of remaining candidates of the 14 response classes

after a guess g be Cg ¼ kCg,1, Cg,2, . . ., Cg,14l. We define the

hash function:

HashwðCg ¼ kCg;1;Cg;2; . . . ;Cg;14lÞ
¼ ðC0

g ¼ kC0
g;1;C

0
g;2; . . . ;C

0
g;14lÞ; ð2Þ

where C 0
g,1 � C 0

g, 2 � . . . � C0
g,14. That is, the hash function

sorts the original sequence Cg into a nonincreasing sequence

C 0
g. For the example in Table 1, if the guess g ¼ (0, 0, 1, 2),

we have Cg ¼ k1, 20, 5, 40, 105, 4, 84, 230, 182, 2, 44, 222,
276, 81l and C 0

g ¼ k276, 230, 222, 182, 105, 84, 81, 44, 40,
20, 5, 4, 2, 1l. If two nonincreasing sequences C 0

g and C 0
h are

the same, that is, C 0
g,1 ¼ C 0

h,1, . . . , and C 0
g,14 ¼ C 0

h,14, then the

guess g and the guess h are classified into the same HCG.

Table 1 shows the number of remaining candidates of the 14

response classes after the first guess. Note that after the first

guess, all the 1296 candidates will automatically be classified

into only five HCGs by the hash function Hashw. In addition,

all the candidates in the same HCG are equivalent. Unfortu-

nately, after the second guess, the situation becomes more

complicated. That is, some guesses that are not equivalent

are possibly classified into the same HCG. However, we
FIGURE 4. An illustration of search space of next potential

components.
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also guarantee the fundamental properties that (i) for two com-

ponents in the same HCG, they are most likely equivalent, and

that (ii) for two equivalent components, they are definitely in

the same HCG. Therefore, we can arbitrarily choose a guess to

represent its HCG, rather than exhaustively explore all guesses

in the HCG, and obtain an approximate result.

4.2. TPOA for the game in the expected case

In this case, we will minimize the external path length of the

game tree to achieve the optima. The simple heuristic used

in this case is Barteld’s ‘most-parts strategy’ [14].

Heuristic for the game in the expected case. Maximize the

number of parts caused by partitioning the remaining candi-

dates according to the guess. As shown in Table 1, the

number of non-zero parts from guesses 0000, 0001, 0011,

0012 and 0123 are 5, 11, 13, 14 and 14, respectively. The

guess chosen in the ‘most-parts’ heuristic is 0012 or 0123.

Note that the two guesses are in the same HCG. In reality,

0012 is the best guess.

The corresponding hash function can be defined as follows:

Hash function for the game in the expected case. Let the

number of remaining candidates of the 14 response classes

after a guess g be Cg ¼ kCg,1, Cg,2, . . ., Cg,14l and let jCgj ¼

P
i¼ 1
14 xg,i, where xg.i ¼ 1 if Cg,i . 0 and xg,i ¼ 0 otherwise.

We define the following hash function.

HasheðgÞ ¼ jCgj: ð3Þ

5. EXPERIMENTAL RESULTS

In this section, we first compare TPOA against A* algorithms

to show (i) the effectiveness and (ii) the ability to discover

optimal solutions of TPOA. Then, the comparison between

previous results and our results for the Mastermind problem

is given. All experiments were run on a Pentium IV 1.6 GHz

computer.

In our experiment, an A* strategy has been developed to

solve the Mastermind problem in the expected case. It evalu-

ates nodes by combining g(n), the path length from the root of

the game tree to node n, and h(n), the external path length of

the ‘full’ subtree rooted at node n. The full subtree guarantees

that after each guess, there is a remaining candidate in the class

[4, 0]. It is easy to show that h(n) is admissible [35]. That is,

the solution obtained by the A* strategy must be an optimal

one.

Comparison results for the two algorithms in solving a test

case, the 3 � 5 Mastermind problem, are given in Table 2.

TABLE 2. Comparison results for the A* strategy and TPOA for 3 � 5 Mastermind

Experiments

External path

length (L)

The number of

guesses in the

expected case

(L/53)

The number of

guesses in the

worst case (n)

Within % of the

optima in the

expected case

(451/L) (%)

Run time

(s)

A* 451 3.608 5 100 125.34

TPOA* with

Hashw

(k, d) ¼ (1, 1) 460 3.680 5 98.043 0.01

(k, d) ¼ (5, 2) 460 3.680 5 98.043 0.02

(k, d) ¼ (10, 2) 460 3.680 5 98.043 0.04

(k, d) ¼ (20, 2) 452 3.616 5 99.778 0.09

(k, d) ¼ (30, 2) 452 3.616 5 99.778 0.15

(k, d) ¼ (40, 2) 451 3.608 5 100 0.23

TABLE 1. The number of remaining candidates in each class after the first guess [14]

Guess

Class

[4,0] [3,0] [2,2] [2,1] [2,0] [1,3] [1,2] [1,1] [1,0] [0,4] [0,3] [0,2] [0,1] [0,0] Number of parts

0000 1 20 0 0 150 0 0 0 500 0 0 0 0 625 5

0001 1 20 3 24 123 0 27 156 317 0 0 61 308 256 11

0011 1 20 4 32 114 0 36 208 256 1 16 96 256 256 13

0012 1 20 5 40 105 4 84 230 182 2 44 222 276 81 14

0123 1 20 6 48 96 8 132 252 108 9 136 312 152 16 14
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The optimal solution for the game in the expected case is L ¼

451, which can be discovered both by the A* strategy and

TPOA*(40, 2). The A* strategy spends much longer time

than TPOA*(40, 2) does, so TPOA is quite efficient.

However, it is worth to mention that TPOA cannot guarantee

to yield the optimal strategies even though a large parameter

setting (k, d) is given. The performance of TPOA critically

depends on the choice of heuristic and the corresponding

hash function to the problem at hand.

A comparison between previous results and our results for

Mastermind is shown in Table 3. We performed four series

of experiments denoted as series (1–4). From the experimen-

tal results, we have the following observations.

(i) In series (1), when (k, d) ¼ (1, 1), our result is optimal

in the worst case, i.e. n ¼ 5, and is within 97.38% of

the optima, which is better than the result [1] in the

expected case.

(ii) In series (4), when (k, d) ¼ (5, 2), the result L ¼ 5647

is within 99.61% of the optima, which outper-

forms the best results of the previous heuristic

strategy [5].

(iii) In series (1) and (2), since the hash function Hashw is

tailored to the game in the worst case, all experiments

achieve the optima, i.e. n ¼ 5, for the game in the

worst case.

(iv) On the other hand, in series (3) and (4), all experiments

obtain better results in the expected case than those

obtained by the corresponding experiments in series (1)

and (2). For the example of (k, d)¼ (1, 1), the exper-

iment in series (3) obtains L¼ 5674, which is smaller

than 5776 obtained by the experiment in series (1).

(v) Compared to TPOAþ (k, d), TPOA* (k, d) exploits

much smaller search space (and hence spends less

time) but the quality of results is comparable to those

obtained by TPOAþ (k, d), particularly for exper-

iments in series (3) and (4). For example,

TPOA*(30, 2) and TPOAþ (30, 2) discover the

same result, i.e. L ¼ 5632, but the latter takes much

longer time than the former does.

TABLE 3. A comparison among different strategies for Mastermind

Previous methods and our

experiments

External path

length (L)

The number of

guesses in the

expected case

(L/64)

The number of

guesses in the

worst case (n)

Within of the

optima in the

expected case

(5625/L) (%) Run time (s)

Knuth [1] 5803 4.4776 5 96.9326 N/A

Barteld [14] 5668 4.3735 6 99.2414 N/A

Neuwirth [5] 5656 4.3642 6 99.4519 N/A

Koyama [6] 5625 4.3403 6 100 N/A

(1) TPOAþ

with Hashw

(k, d) ¼ (1, 1) 5776 4.4568 5 97.3857 2.12

(k, d) ¼ (5, 2) 5749 4.436 5 97.8601 20.58

(k, d) ¼ (10, 2) 5711 4.4066 5 98.4941 71.24

(k, d) ¼ (20, 2) 5669 4.3742 5 99.2238 263.29

(k, d) ¼ (30, 2) 5659 4.3665 5 99.3992 589.63

(2) TPOA* with

Hashw

(k, d) ¼ (1, 1) 5776 4.4568 5 97.3857 2.12

(k, d) ¼ (5, 2) 5760 4.4444 5 97.6563 14.37

(k, d) ¼ (10, 2) 5716 4.4105 5 98.408 40.06

(k, d) ¼ (20, 2) 5676 4.3796 5 99.1015 137.32

(k, d) ¼ (30, 2) 5665 4.3711 5 99.2939 297.56

(3) TPOAþ

with Hashe

(k, d) ¼ (1, 1) 5674 4.3781 6 99.1364 2.08

(k, d) ¼ (5, 2) 5643 4.3542 6 99.6810 17.29

(k, d) ¼ (10, 2) 5640 4.3519 6 99.7340 59.81

(k, d) ¼ (20, 2) 5634 4.3472 6 99.8403 226.59

(k, d) ¼ (30, 2) 5632 4.3457 6 99.8757 504.71

(4) TPOA* with

Hashe

(k, d) ¼ (1, 1) 5674 4.3781 6 99.1364 2.06

(k, d) ¼ (5, 2) 5647 4.3573 6 99.6104 12.24

(k, d) ¼ (10, 2) 5641 4.3526 6 99.7164 34.10

(k, d) ¼ (20, 2) 5637 4.3495 6 99.7871 119.59

(k, d) ¼ (30, 2) 5632 4.3457 6 99.8757 255.18
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(vi) Compared with the latest published genetic algorithm

[10], TPOA obtains higher quality of results both in the

worst and expected cases of the game. In [10],

although the average run time is shorter, the average

number of guesses is 4.75, which is larger than

4.4568 obtained by TPOAþ (1, 1). Furthermore, the

number of guesses in the worst case has no upper

bound by using genetic algorithms.

Now, TPOAþ (180, 2) with Hashe has achieved the optimal

result, L ¼ 5625, for the game in the expected case in

1464.69 s. This is the first approximate approach to obtain

the optimal result (to our knowledge). According to the

optimal game tree developed above, we have also implemented

an interactive program for the game of Mastermind, which is

available on the website [36]. For the game with larger size,

5 � 7 Mastermind, TPOA* (30, 2) with Hashe has obtained

approximate results within about 27 hours, where the

number of guesses required for the worst and expected cases

are 7 and 5.1381, respectively.

From the above observations, we conclude some important

characteristics of TPOA as follows.

(i) The larger the parameter setting (k, d), the more accu-

rate the solution is. Tuning the parameter setting (k, d)

is able to balance the tradeoff between the run time and

the solution quality.

(ii) As parameters (k, d) increase, the TPOA tree becomes

larger. Any kind of conventional tree pruning algor-

ithms can be applied to TPOA.

(iii) TPOA could be applied to some other combinatorial

optimization problems, e.g. the set covering problem,

provided that an appropriate heuristic and the corre-

sponding hash function for each of the problems is given.

6. CONCLUDING REMARKS

In this paper, we propose a systematic model, called TPOA.

TPOA is able to obtain (near-)optimal results that cannot be

discovered by the previously published heuristic strategies.

Compared with genetic algorithms, TPOA obtains higher

quality of results both in the worst and expected cases for

the game of Mastermind. Moreover, TPOA achieves the

optimal result for the game in the expected case, where L ¼

5625. This is the first approximate approach to obtain the

optimal result (to our knowledge).

TPOA could be applied to related problems with larger

sizes, which are difficult to solve by complete algorithms

within a reasonable time. Depending on the characteristics

of each problem, how to define an appropriate hash function

for the problem at hand is a critical issue. Furthermore, with

the excellent ability to discover solutions with diversity,

TPOA could cooperate with other local search methods,

such as genetic algorithms and Tabu search. This could be

further studied in the future.
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