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This paper presents new and systematic methodologies to analyze deductive games 

and obtain optimal algorithms for 2 × n AB games, where n ≥ 2. We have invented a 
graphic model to represent the game-guessing process. With this novel approach, we find 
some symmetric and recursive structures in the process. This not only reduces the size of 
the search space, but also helps us to derive the optimum strategies more efficiently. By 
using this technique, we develop optimal strategies for 2 × n AB games in the expected 
and worst cases, and are able to derive the following new results: (1) n/2 + 1 guesses 
are necessary and sufficient for 2 × n AB games in the worst case, (2) the minimum 
number of guesses required for 2 × n AB games in the expected case is (4n3 + 21n2 - 76n 
+ 72)/12n(n - 1) if n is even, and (4n3 + 21n2 - 82n + 105)/12n(n - 1) if n is odd.  

The optimization of this problem bears resemblance with other computational 
problems, such as circuit testing, differential cryptanalysis, on-line models with 
equivalent queries, and additive search problems. Any conclusion of this kind of 
deductive game may be applied, although probably not directly, to any of these problems, 
as well as to any other combinatorial optimization problem. 
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1. INTRODUCTION 
 

The game of Mastermind is a deductive game for 2 players: a codemaker and a 
codebreaker. The codemaker chooses a secret code consisting of four pegs out of six 
possible colors. Repeated colors are allowed, so the set of possible codes is 64 = 1296. 
The codebreaker then tries to guess the code. After each guess, the codemaker responds 
with a hint that consists of black and white pegs; a black peg means that a peg in the 
codebreaker’s guess is correct in both position and color; a white peg means that a peg in 
the guess is correct in color but not in position; and finally, no pegs means that there are 
pegs in the guess which are not correct in color. The purpose of the game is to solve the 
code (i.e., get four black pegs) in the smallest number of guesses. 

Another well-known deductive game in England and Asia, called “Bulls and Cows” 
[1] or the AB game, is a variant of the Mastermind game. The difference is that all the 
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digits of the code in the game must be distinct, but 10 colors are allowed. Hence, the set 
of possible codes is the number of permutations: P(10, 4) = 10 * 9 * 8 * 7 = 5040. Now 
we restate the game with a more precise description. The codemaker chooses a secret 
code (s1, s2, s3, s4). After each guess (g1, g2, g3, g4) made by the codebreaker, the 
codemaker responds with a pair of numbers [A, B], where A is the number of “direct 
hits,” i.e., the number of positions j such that sj = gj, and B is the number of “indirect 
hits,” i.e., the number of positions j such that sj π gj but sj = gk for some position k π j. For 
example, if the secret code is (1, 2, 3, 4) and the guesses are (3, 1, 5, 4) and (3, 1, 4, 5), 
then the responses are [1, 2] and [0, 3], respectively. The goal of the codebreaker is, 
based on the responses, to minimize the number of guesses needed, and to find the secret 
code.  

Over the past three decades, much research has been done on this kind of game. 
Knuth [1] demonstrated a strategy for the Mastermind game that requires at most five 
guesses in the worst case and 4.478 in the expected case. The strategy used in [1] is to 
choose the guess that minimizes the maximum number of remaining possibilities at every 
stage. Later, Irving [2] and Nerwirth [3] used sophisticated heuristic strategies to improve 
the bounds in the expected case to 4.369 and 4.364, respectively. Finally, Koyama and 
Lai [4] used a recursive backtracking method to determine the optimal strategy for 
Mastermind, where the expected number of guesses is 4.34. Also, variants of the 
Mastermind game have been studied in [5, 6], and [7]. Furthermore, in [8, 9] and [10], 
the authors used evolutionary algorithms and genetic algorithms to solve related 
problems. More recently, Roche [11] analyzed the generalized Mastermind and obtained 
asymptotical bounds under some conditions. Kabatianski and Thorpe [12] investigated 
the Mastermind game and its related applications based on coding theorem.  

Merelo et al. [10] transferred the optimal strategy for Mastermind game to a 
combinatorial optimization problem. It bears resemblance to other computational 
problems, such as circuit testing, differential cryptanalysis, on-line models with 
equivalent queries, and additive search problems. Consequently, any conclusion of this 
kind of deductive game may be applied, although probably not directly, to any of these 
problems, as well as to any other combinatorial optimization problem.  

To describe and compare the variants of these games, we briefly introduce the 
notation defined in [5]. The Mastermind game is denoted by MM4 × 6, signifying four 
pegs and six colors with repetition of colors allowed. The AB game is denoted by MM4 
× 10N, signifying four digits (pegs) and ten symbols (colors) with repetition of symbols 
prohibited. Likewise, MM2 × nN signifies two digits and an arbitrary number n of 
symbols with repetition of symbols prohibited.  

Because the complexity of these games grows at an exponential rate, no optimal 
strategy for them when they have higher dimensions (i.e., when the games have more 
than 4 pegs and 6 colors, i.e., 4 × 6) has yet been found. In this paper, we develop a 
systematic methodology to discover the optimal strategies for general AB games with 2 
digits—MM2 × nN games (or 2 × n AB games in this paper, where n ≥ 2).  

This paper is organized as follows. In section 2, we introduce some properties of 
game trees and use the binary search technique to determine the optimum strategy for a 
simple deductive game. In section 3 we present the graphic model by means of a MM2 × 
5N game. The optimal strategy for 2 × n AB games is developed in section 4. Section 5 
contains our concluding remarks.  



OPTIMAL ALGORITHMS FOR 2 × n AB GAMES – A GRAPH-PARTITION APPROACH  

                                    

107

2. AN OPTIMUM STRATEGY FOR A SIMPLE DEDUCTIVE GAME 
 
In this section, we deal with a simple type of deductive games, 1 × n games. By 

means of some properties of game trees, we will show how to determine the minimum 
numbers of guesses required both in the expected and the worst case for the game. By 
means of this comparatively simple work, we present some fundamental concepts that 
can be applied to develop the optimal strategy for 2 × n AB games in section 3 and 
section 4. 

 
2.1 The Game Trees for Deductive Games 

 
In 1 × n deductive games, the codemaker chooses a secret number S, S ∈ {0, 1, 

2, …, n - 1}. After each guess gi made by the codebreaker, the codemaker responds with 
a hint Hi , Hi ∈ {<, =, >}, three elements of which refer to S < gi, S = gi, and S > gi, 
respectively. The goal of the codebreaker is, based on the hints, to minimize the number 
of guesses required, and to find the secret number. Obviously, the guessing process for 
this game can be translated into a search problem. We can obtain the optimum strategy 
for this game by using the binary search technique, which is shown in Theorem 1. In 
order to demonstrate how to calculate the number of guesses required in the worst and 
expected cases for 1 × n games, we illustrate our strategy by way of a 1 × 16 game, the 
game tree T which is shown in Fig. 1. 

In Fig. 1, the number in each node represents each guess gi. We start by comparing 
the secret number S with the middle key of the possible secret numbers, which is 7 in the 
root in this case. According to the hint given by the codemaker, we decide which subtree 
should be chosen to guess next, and the same procedure can be used again until S is hit.  
More precisely, if the secret code S is equal to gi, then our strategy goes down to the leaf 
under node gi, which means we hit the code and the game is finished. If S < gi, then our 
strategy follows the left subtree; similarly if S > gi, the right subtree is used. For example, 
if S = 5, our guessing sequence will be 7, 3, and then 5 because S < 7, S > 3, and S = 5, 
where 3 guesses are required to hit the secret number. On the other hand, if S = 15, then 
our guessing sequence will be 7, 11, 13, 14, and then 15, where 5 guesses are required to 
finish the game. By doing so as shown in Fig. 1, we can easily obtain the following two 
observations. These observations can be applied to analyze arbitrary deductive games. 
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Fig. 1. A game tree T for a 1 × 16 game, where the binary search strategy is used. 
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Observation 1  The number of guesses required in the worst case for a game is H, 
where H is the height of the game tree, i.e., the length of a longest path from the root to a 
leaf in the game tree. For example, H = 5 in Fig. 1. 

Observation 2  The number of guesses required in the expected case for a game is L/n, 
where L is the external path length [13] of the game tree; i.e., the sum of the distances 
from the root to each leaf in the game tree. For example, in Fig. 1, L = 1 * 1 + 2 * 2 + 3 * 
4 + 4 * 8 + 5 * 1 = 54 and the number of guesses required in the expected case is L/n = 
54/16 = 3.375.  

Notice that if we remove all the leaf nodes from Fig. 1, then the game tree built by 
the binary search technique is always a full binary tree, as shown in Fig. 2. In the 
following paragraphs, to take advantage of the properties of binary trees, we ignore the 
leaf nodes of the game tree, thus forming a full binary tree Tb, whose height and total 
path length are denoted by Hb and Lb, respectively, where Lb is the sum of the distances 
from the root to each node in the game tree. It is easy to show that the number of guesses 
required in the worst case and the expected case for a 1 × n game will be Hb + 1 and Lb/n 
+ 1, respectively.  
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Fig. 2. A full binary game tree Tb obtained by removing all the leaf nodes from the game tree T  

shown in Fig. 1. 

 
2.2 The Minimum Number of Guesses Required for a Deductive Game 

In Theorems 1 and 2, we will present an optimum strategy based on the binary 
search technique and derive the minimum numbers of guesses required in the worst case 
and expected case. Before that, we will look at a property [14] concerning the minimum 
total path length in a binary tree, which we need to prove Theorem 1, as shown in 
Lemma 1. 

Lemma 1  A binary tree has the minimum total path length if and only if all its external 
nodes occur on at most two adjacent levels. 

Proof [14]: Omitted.                                                    � 

Theorem 1  log2n + 1 guesses are necessary and sufficient for 1 × n games in the 
worst case. 
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Proof: The necessary and sufficient conditions can be proven by the following two facts: 
First, the binary game tree, Tb, built by the binary search technique is always full, which 
means that Tb always has minimum height. Second, the height Hb of a full binary tree 
with n nodes is log2n. Therefore, the number of guesses required in the worst case is Hb 

+ 1 = log2n + 1. This then proves the result.                                � 
 
Theorem 2  The minimum number of guesses required for 1 × n games in the expected 
case is ((n + 1)( log2n - 1) + 2)/n + 1 if n = 2k 

- 1, where k ∈ Z; and it is ((n + 1) 
log2n - 2log

2
n+1 + 2)/n + 1 if n ≠ 2k 

- 1, where k ∈ Z. 
 
Proof: Necessary: Since the game tree, Tb, built by binary search techniques is always 
full, all external nodes of Tb occur on at most two adjacent levels. By Lemma 1, the 
necessary condition is proven.  

 
Sufficient: We divide the proof into two cases to prove this property. 

 
Case 1. If n = 2k 

- 1, then the game tree Tb for the game is a complete binary tree. In this  

case L 2 n n nb
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The number of guesses required is Lb/n + 1 = ((n + 1)(log2n - 1) + 2)/n + 1.  
Case 2. If n ≠ 2k 

- 1, then the game tree Tb for the game is full but not complete. The 
number of nodes at the bottom level is only n - (2log

2
n - 1) rather than 2log

2
n as 

in a complete binary tree, and the distance from the root to each node in this level 
equals log2n. Therefore, we should subtract the quantity log2n * (2log

2
n - (n - 

(2log
2
n - 1))/n = log2n * (2log

2
n+1 – n – 1)/n from the formula obtained in Case 

1. That is, Lb = 2(log
2
n+1) (log2n - 1) + 2 - (log2n * (2log

2
n+1 – n – 1)) = (n + 1) 

log2n - 2log
2
n+1 + 2. This completes the proof.                      � 

 
We can now apply the results of Theorems 1 and 2 to a 1 × 15 game, the game tree 

for which is complete, and to a 1 × 16 game, the game tree for which is not complete. For 
the 1 × 15 game, the numbers of guesses required in the worst and expected cases are 4 
and ((15 + 1)(log215 - 1) + 2)/15 + 1 = (16 * 2 + 2)/15 + 1 = 3.2667, respectively. For 
the 1 × 16 game, the numbers of guesses required in the worst and expected cases are 5 
and ((1 * 2 + 2 * 4 + 3 * 8 + 4 * 16) - (4 * 15))/16 + 1 = 3.375, respectively. 

3. A NEW GRAPHIC MODEL 
 

In this section, we present a graphic model to represent the guessing process of the 
deductive games. The main idea behind the proposed method is to represent the set of 
codewords compatible with the responses given so far as graphs for 2 × n games. By 
using this methodology, we can easily discover the symmetric, isomorphic, and recursive 
properties to reduce the search space of the game. Furthermore, we are able to develop an 
optimal strategy for 2 × n AB games in the next section. 
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3.1 The Graphic Model 
 
First, we introduce the graphic model by means of a 2 × 5 AB game for simplicity. 

We start with some definitions. The game tree for the 2 × 5 AB game is shown in Fig. 3. 
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Fig. 3. A graphic model to represent the results after the first guess and one of second guesses for 2 

× 5 AB game, where (0, 1) and (2, 3) are the partition edges in G0 and G2, respectively. 

 
Any moment in the game is expressed by a node, represented by a game graph Gi = 

<Vi, Ei>, in the game tree. The root G0 = <V0, E0> of the game tree is a complete directed 
graph with 5 vertices and 20 edges. We map the game graphs to 2 × n AB games as 
follows: 

 
Vertex: Each vertex in a game graph Gi corresponds to a symbol in the AB game; for 
example, 0, 1, 2, 3, and 4 are five symbols in the 2 × 5 AB game. Notice that we use the 
term “node” in the game tree and “vertex” in the game graphs. 

 
Edge: Each directed edge in a game graph Gi refers to a possible codeword, so there are 5 
× 4 = 20 edges in the root G0 of the game tree. In the medium stages, the edges in a game 
graph Gi, i ≥ 1, refer to the remaining candidates, i.e., unidentified codewords.  
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Partition edge: the edge codebreaker chooses to partition the game graph; for instance, 
the dashed arrow (0, 1) shown in G0 of Fig. 3 refers to the first guess (0, 1) in a 2 × 5 AB 
game. Notice that, according the rules of this game, we can choose arbitrary partition 
edge e ∈ E0 (not necessarily e ∈ Ei) in the medium stage, for example, (2, 3) can be 
chosen as the partition edge in G2. 

 
Each class, represented as a node in the game tree, in level 2 refers to one response 

[A, B] after guessing (0, 1) in the game. The five classes in level 2, i.e., [2, 0], [1, 0], [0, 
1], [0, 0], and [0, 2], partition the set of 20 edges in the complete directed graph G0 in the 
root node. Moreover, only one edge (0, 1) remains in G1, which refers to class [2, 0]. It 
means that the edge (0, 1) was hit. On the other hand, if there is only one edge in a class, 
except for the class [2, 0], then this edge is said to be identified, and one more guess is 
required to hit it. For example, there is only one edge (1, 0) in G5. We need one more 
guess (1, 0) to finish the AB game. 

 
3.2 The Partition Principles 

 
Now we will present how to partition the edges on the graph. Remember that a 

game graph Gi is a directed graph. If the partition edge is (j, k), then vertex j is called the 
origin vertex, and vertex k is called the destination vertex. We can partition all the edges 
in the game graph Gi according to the following simple rules: 

 
(1) The outgoing edges (j, m) from the origin vertex j and the incoming edges (m, k) to 

the destination vertex k are classified as [1, 0], where m π k, m π j. 
(2) The outgoing edges (k, m) from the destination vertex k and the incoming edges (m, j) 

to the origin vertex j are classified as [0, 1] , where m π j, m π k. 
(3) The edges that are not adjacent to the origin and destination vertices are classified as 

[0, 0]. 
(4) The edge (j, k) that is both an outgoing edge from the origin vertex j and an incoming 

edge to the destination vertex k is classified as [2, 0]. 
(5) The edge (k, j) that is both an outgoing edge from the destination vertex k and an 

incoming edge to the origin vertex j is classified as [0, 2]. 
 
As depicted in Fig. 3, at the initial stage, the partition edge (0, 1) in G0 partitions the 

20 edges into five classes. The outgoing edges from the origin vertex 0, i.e., (0, 2), (0, 3), 
and (0, 4), and incoming edges to the destination vertex 1, i.e., (2, 1), (3, 1), and (4, 1), 
are classified into class [1, 0], i.e., G2. The edge (0, 1) is both an incoming edge to vertex 
1 and an outgoing edge from vertex 0, so it is classified into class [2, 0], i.e., G1. The 
other classes can be obtained in the same way. 

 
3.3 A Strategy for the 2 × 5 AB Game  

 
Now we will describe the goals in this paper and show how we can achieve them 

using the graphic model. By means of the partition rules given above, we can translate 
the game-guessing process into a sequence of graph partition and tree traversal 
procedures. Notice that all the leaves in the game tree are “hits nodes”; i.e., one candidate 
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is hit in each of the leaf nodes. Therefore, we can directly apply the results described in 
Observations 1 and 2 to obtain the optimal strategy for 2 × n AB games. Our goals are, 
thus, to minimize the height H of the game tree for the worst case and to minimize the 
external path length L of the game tree in the expected case. The key to achieving these 
goals is simply to choose the best partition edge to partition the remaining edges at each 
stage, like playing the real game. 

In Lemma 2, we show how to calculate the total number of guesses required to hit 2 
remaining candidates (or 2 remaining edges) in a class (or a game graph). This lemma 
can be applied to m × n AB games with arbitrary m, n. 
 
Lemma 2  If a game graph that is the root node of a game tree contains only two 
remaining edges, then the minimum possible values for the external path length L and the 
height H of the game tree are 3 and 2, respectively. 
 
Proof: Sufficient: We can choose one of the two remaining edges as the partition edge. 
Then, this edge will be hit, and the other edge will be identified and one more guess is 
required. Therefore, a possible value for the external path length L of the game tree is 1 + 
2 = 3, and that for the height H of the game tree is 2. 
 
Necessary: For the situation where two edges remain in a game graph, there are only 
three possibilities for choosing the partition edge.  
 
Case 1. Choose one of these two remaining edges as the partition edge. As described in 

the sufficient condition, the external path length L of the game tree is 1 + 2 = 3, 
and the height H of the game tree is 2. 

Case 2. Choose an edge adjacent to at least one of the two remaining edges. The best 
result of these guesses is able to identify the two remaining edges simultaneously, 
each of which requires one more guess to be hit. So the external path length L of 
the game tree is 2 + 2 = 4, and the height H of the game tree is 2. 

Case 3. Choose an edge that is not adjacent to the two remaining edges. The result of this 
guess makes no contribution to further guesses since the game graph after the 
guess is the same as the one before the guess. Thus, we can omit this possibility. 

 
Therefore, to hit 2 remaining edges in a game graph (or a class), the external path length 
L of the game tree must be at least 3, and the height H of the game tree must be at least 2. 
In other words, the total number of guesses required to hit the two remaining candidates 
is at least 3. Hence, the number of guesses in the expected case is 3/2 = 1.5. In addition, 
the number of guesses in the worst case is at least 2.                       � 

Now we will present a strategy for playing the 2 × 5 AB game on the graphic model 
and show how to calculate the external path length L and the height H of the game tree. 
In this way, we can develop sophisticated strategies for higher dimension games. To 
demonstrate the variety of strategies, the strategies used in the following examples are 
not necessarily optimal choice. Observing the first guess in Fig. 3, since G0 is a 
symmetric and complete graph, choosing any edge as the partition edge will obtain the 
same result. We choose (0, 1) as the partition edge. After the first guess, there is only one 
remaining edge (0, 1) in G1 (class [2, 0]). Notice that Fig. 3 shows only one leaf G1, and 
the distance from the root G0 to G1 is 1. Therefore, edge (0, 1) only requires one guess to 
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be hit. Although the edge (1, 0) is also the only edge in G5 (class [0, 2]), one more guess 
is required to “hit” the edge (1, 0), so it requires 2 guesses. Furthermore, it is easy to 
show that the game graphs G2 and G3 for classes [1, 0] and [0, 1] are isomorphic; that is, 
if we exchange vertex 0 and vertex 1 in the game graph G2 for class [1, 0], then it will be 
equivalent to the game graph G3 for class [0, 1]. Intuitively, they have the same number 
of guesses in both the worst case and the expected case. Therefore, we will concentrate 
on classes [1, 0] and [0, 0]. In the following paragraphs, we describe the general 
procedures used to calculate the number of guesses for the 2 × 5 AB game in the worst 
and expected cases. 

In G2 of Fig. 3, the partition edge (2, 3) partitions the remaining six edges into three 
nonempty classes, [1, 0], [0, 1], and [0, 0], each of which has two remaining edges. By 
Lemma 2, the two remaining edges can be hit in one and two more guesses, respectively. 
Therefore, the external path length for G2, L2 = 2 + 3 + 2 + 3 + 2 + 3 = 15; hence, by 
Observation 2, the expected number of guesses for G2 is L2/6 = 2.5. 

Now we will consider how to calculate the total number of guesses (or the external 
path length L4) for the 2 × 3 AB game in the expected case. In G4 shown in Fig. 4, there 
is a complete subgraph with three vertices and six directed edges, which represents the 2 
× 3 AB game. If (4, 2) is chosen as the partition edge, as shown in Fig. 4, we need 1, 2, 3, 
2, 3, and 2 guesses to hit edges (4, 2), (4, 3), (3, 2), (3, 4), (2, 3), and (2, 4), respectively.  

Therefore, the external path length L4 for the node G4 is L4 = 1 + 2 + 3 + 2 + 3 + 2 = 
13; thus, the expected number of guesses for the game graph G4 is L4/6 = 13/6. 

Finally, we combine Figs. 3 and 4. If we choose (2, 3) and (4, 2) as the partition 
edges in G2 and G4, respectively, then the height of the game tree is 4; that is, by using 
our analysis technique the number of guesses in the worst case is 4. The total number of 
guesses L0 for G0 can be computed as follows: L0 = (L1 + L2 + L3 + L4 + L5) + (the total 
number of edges in G0) = (L1 + 1) + (L2 + 6) + (L3 + 6) + (L4 + 6) + (L5 + 1) = (0 + 1) + 
(15 + 6) + (15 + 6) + (13 + 6) + (1 + 1) = 64, where L1 + 1 is for G1, L2 + 6 is for G2, and 
so on. Therefore, the expected number of guesses for G0 = 64/20 = 3.2. 

4. AN OPTIMUM STRATEGY FOR 2 × n AB GAMES 
 
In this section, the graphic model described in section 3 is used to develop an 

optimum strategy for 2 × n AB games. We simplify the graphic representation for the 
game and define three types of subgraphs, denoted by Ga(k), Gb(k), and Gc(k) in Figs. 5 
(b), 5 (c), and 5 (d), respectively. The rectangle shown in Fig. 5 (a) and the ellipse shown 
in Fig. 5 (b), denoted by “i～j” inside, refer to a graph with only j - i + 1 separate 
vertices named i, i + 1, …, j, and a complete directed graph with j - i + 1 vertices named 
i, i + 1, …, j, or “all to one” edges, each of which connects the vertex outside the 
rectangle to all the vertices inside the rectangle. Hence, there are n - 1 and 2(n - 2) edges 
in Figs. 5 (c) and 5 (d), respectively. 

 
Definition 4.1  T(k), T1(k), and T2(k) are the minimal external path lengths of the game 
trees whose roots are the nodes for Ga(k), Gb(k), and Gc(k), respectively. In a similar way, 
we define H(k), H1(k), and H2(k) as the minimal possible values for the height of the 
game trees for Ga(k), Gb(k), and Gc(k), respectively. 
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Fig. 4. The game tree for G4, which represents the 2 × 3 AB game. The total number of guesses for 

the six edges is 13; the expected number of guesses for the graph is 13/6. 

(d) Gc(k) 

(b) Ga(k) 

 0～k-1 

0

1

2～k-1 or 

(c) Gb(k) 

(a) 

0～k-1 

0

1～k-1 

0

1～k-1 

 
Fig. 5. (a) A graph with k vertices and no edges. (b) A complete directed graph, Ga(k), with k 

vertices and k(k - 1) edges. (c) Two types of graphs, Gb(k)s, with k - 1 edges. (d) A graph, 
Gc(k), with 2(k - 2) edges. 
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Lemma 3  The minimal number of guesses required for 2 × n AB games is T(n)/n(n - 1) 
for the expected case and H(n) for the worst case. 
 
Proof: Since the initial state for 2 × n AB games is Ga(n), by Definition 4.1, the minimal 
external path length and the minimal height of the game tree are T(n) and H(n), 
respectively. From Observations 1 and 2, the results of this property follow.       � 
 

Now we will demonstrate our procedure for deriving T(n) and H(n), by which we 
can obtain the optimal strategies for 2 × n AB games in the expected and worst cases. At 
the initial state, since the graph Ga(n) is a symmetric and complete graph, we can choose 
any edge, (0, 1) in this example, as the partition edge; consequently, we will obtain the 
same result. The game tree after the first guess is shown in Fig. 6. The minimal numbers 
of further guesses required for classes [2, 0], [1, 0], [0, 1], [0, 0], and [0, 2] (the external 
path lengths of the subtrees whose roots are the nodes for classes [2, 0], [1, 0], [0, 1], [0, 
0], and [0, 2]) are 0, T2(n), T2(n), T(n - 2), and 1, respectively. In addition, since the 
number of guesses for each remaining candidate (the length from root to each leaf) will 
be increased by one after the first guess, we have to add n(n - 1) to compute T(n), where 
n(n - 1) is the number of edges before the guess(i.e., in the root node). Hence, T(n) = 0 + 
T2(n) + T2(n) + T(n - 2) + 1 + n(n - 1) = T(n - 2) + 2T2(n) + n2 

- n + 1.  

[2,0] [1,0] [0,1] [0,0] [0,2] 

2～n-1 

0～n-1 

0

1

2～n-1 

0

1

2～n-1 

0

1

0

1

 
Fig. 6. The game tree for 2 × n AB games, where (0, 1) is chosen as the partition edge. T(n) = 0 + 

T2(n) + T2(n) + T(n - 2) + 1 + n(n - 1) = T(n - 2) + 2T2(n) + n(n - 1) + 1. 

 
In Fig. 6, since the game graphs for classes [1, 0] and [0, 1] are isomorphic, and 

since the game graph for class [0, 0] can be solved recursively, we only consider the class 
[1, 0]. The four possible ways to partition the class [1, 0], i.e., Gc(n), and their 
recurrences are described as follows: 

 
1. Choose (0, y) or (y, 1) as the partition edge, where y ∈ {2, 3, 4, …, n - 1}. The game 

tree after the first guess is shown in Fig. 7, where we choose (0, 2) as the partition 
edge. Now, the numbers of further guesses required for the classes [2, 0], [1, 0], [0, 1], 
and [0, 0] are 0, T1(n - 2), 1, and T1(n - 2), respectively. In addition, we have to add 
2(n - 2) to compute T2(n), where 2(n - 2) is the number of edges before the guess (0, 
2). Therefore, T2(n) ≤ 0 + T1(n - 2) + 1 + T1(n - 2) + 2(n - 2) = 2T1(n - 2)+ 2n - 3.  
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[2,0] [1,0] [0,1] [0,0] [0,2] 

0

1

3～n-1 2

2

1

0

2
1

3～n-1 

0

3～n-1 

 
Fig. 7. The game tree for graph Gc(n), where (0, 2) is chosen as the partition edge. The notation 

“∅” in class [0, 2] refers to an empty set. T2(n) ≤ 0 + T1(n - 2) + 1 + T1(n - 2) + 2(n - 2) = 
2 T1(n - 2) + 2n - 3. 

 
2. Choose (y, 0) or (1, y) as the partition edge, where y ∈ {2, 3, 4, …, n - 1}. For 

example, in Fig. 8, we choose (2, 0) as the partition edge. The numbers of further 
guesses required for the classes [2, 0], [1, 0], [0, 1], [0, 0], and [0, 2] are 0, 1, T1(n - 2), 
T1(n - 2), and 1, respectively. Therefore, T2(n) ≤ 1 + T1(n - 2) + T1(n - 2) + 1 + 2(n - 
2) = 2 T1(n - 2) + 2n - 2. Choosing (1, 2) as the partition edge will lead to the same 
result according to similar analysis, so we omit it here. 

[2,0] [1,0] [0,1] [0,0] [0,2] 

2 

1 

0 

2 

0 

1

3～n-1 2 

1 

3～n-1 

0 

3～n-1 

 
Fig. 8. The game tree for graph Gc(n), where (2, 0) is chosen as the partition edge. T2(n) ≤ 0 + 1 + 

T1(n - 2) + T1(n - 2) + 1 + 2(n - 2) = 2 T1(n - 2) + 2n - 2. 

 
3. Choose (y1, y2) as the partition edge, where y1, y2 ∈{2, 3, 4, …, n - 1} and y1 π y2. For 

example, in Fig. 9, we choose (2, 3) as the partition edge. Now, T2(n) ≤ 3 + 3 + T2(n - 
2) + 2(n - 2) = T2(n - 2) + 2n + 2. 
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[2,0] [1,0] [0,1] [0,0] [0,2] 

4～n-1 

1 

4～n-1 

0 

0 

12 

3 

0 

12 

3 0 

12 

3  
Fig. 9. The game tree for graph Gc(n), where (2, 3) is chosen as the partition edge. T2(n) ≤ 3 + 3 + 

T2(n - 2) + 2(n - 2) = T2(n - 2) + 2n + 2. 

 
4. Choose (0, 1) or (1, 0) as the partition edge. As shown in Fig. 10, if we choose (0, 1) as 

the partition edge, then there is only one nonempty class [1, 0], which contains all 2(n 
- 2) edges; similarly, if (1, 0) is chosen, the only nonempty class is [0, 1]. That is, we 
cannot derive further partition from this guess and also have to add 2(n - 2) to 
compute T2(n). Therefore, T2(n) ≤ T2(n) + 2(n - 2). 

[2,0] [1,0] [0,1] [0,0] [0,2] 

0

1

2～n-1 

1

0

2～n-1 

 
Fig. 10. The game tree for graph Gc(n), where (0, 1) is chosen as the partition edge. T2(n) ≤ T2(n) + 

2(n - 2) = T2(n) + 2n - 4. 

 
Observing the above recurrences, the total number of guesses for strategy 2 is 

always one more than that for strategy 1. In addition, we cannot derive further partition 
by using strategy 4. Therefore, we can ignore strategies 2 and 4 here. Now, we can 
simply investigate strategies 1 and 3 to determine which one is the better. That is, we can 
determine the optimal strategy for T2(n) = Min(2T1(n - 2) + 2n - 3, T2(n - 2) + 2n + 2). 

Now we will focus on the graph Gb(n). There are two types of graphs, between 
which only the edge direction is different, as shown in Fig. 5 (c). Hence, we can obtain 
the same numbers of further guesses for these two types of graphs by changing the 
direction of the partition edge. Therefore, without loss of generality, we only need to 
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consider one type of graph. Now we will describe the three possible ways to partition 
Gb(n) and their recurrences as follows: 

(i) Choose (0, y) as the partition edge, where y ∈ {1, 2, 3, …, n - 1}. In Fig. 11 (a), we 
choose (0, 1) as the partition edge, which partitions the graph Gb(n) into two 
nonempty classes, [2, 0] and [1, 0]. The numbers of further guesses for these two 
classes are 0 and T1(n - 1), respectively. In addition, there are n - 1 edges in the graph 
Gb(n). Therefore, T1(n) ≤ 0 + T1(n - 1) + n - 1= T1(n - 1) + n - 1. 

[1,0] [0,0] [0,1] [2,0] [1,0] 

(b) (a) 

0 

2～n-1 

0

3～n-1 

0

1

2～n-1 

0

1

0

1

3～n-1 

0

12

0

2

 
Fig. 11. (a) Strategy (i), where (0, 1) is the partition edge. T1(n) ≤ 0 + T1(n - 1) + n - 1. (b) Strategy 

(iii), where (1, 2) is the partition edge. T1(n) ≤ 1 + T1(n - 2) + 1 + n - 1. 

 
(ii) Choose (y, 0) as the partition edge, where y ∈ {1, 2, 3, …, n - 1}. We choose (1,0) 

as the partition edge, which partition the graph Gb(n) into two nonempty classes, [0, 
2] and [1, 0]. The numbers of further guesses for these two classes are 1 and T1(n - 
1), respectively. Therefore, T1(n) ≤ 1 + T1(n - 1) + n - 1 = T1(n - 1) + n.  

(iii) Choose (y1, y2) as the partition edge, where y1, y2 ∈ {1, 2, 3, …, n - 1} and y1 π y2. 
For example, we choose edge (1, 2) as the partition edge, as shown in Fig. 11(b). 
Now, T1(n) ≤ 1 + T1(n - 2) + 1 + n - 1 = T1(n - 2) + n + 1. 
 
From the above analysis, we have T1(n) =Min(T1(n − 2) + n + 1, T1(n − 1) + n, T1(n 

− 1) + n − 1) = Min (T1(n − 2) + n + 1, T1(n − 1) + n − 1). 
To minimize the total number of guesses, we list the recurrences developed above 

and their solutions in Table 1. Theorem 3 demonstrates the minimum number of guesses 
required for 2 × n AB games in the expected case. 

 
Theorem 3  The minimum number of guesses required for 2 × n AB games in the 
expected case is (4n3 + 21n2 − 76n + 72)/12n(n − 1) if n is even, and it is (4n3 + 21n2 −  
82n + 105)/12 n(n − 1) if n is odd. 
 
Proof: By induction, the recurrences T(n), T2(n), and T1(n) listed in Table 1 can be solved 
as collapsing sums, whose detailed proofs are shown in the Appendix.             �   
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Table 1. The recurrences and their solutions for T(n), T2(n), and T1(n). 

Functions Recurrence relations Solutions 

T(n) = 

3,

13,

T(n 2) 2T (n) n n 1,2
2

- + + - +

R

S
|

T
|

 
if n = 2 

if n = 3 

otherwise 

(4n 21n 76n 72) / 12,

(4n 21n 82n 105) / 12,

3 2

3 2

+ − +
+ − +

R
S
|

T|

 if n is even 

if n is odd 

T2(n) = 

3,

7,

Min(2T (n ) 2n 3,T (n ) n + 2),1 2- + - - +

R

S
|

T
| 2 2 2

 
if n = 3 

if n = 4 

otherwise 

n n 2,

(n n ) / 2,

2

2

+ -

+ -

R
S
|

T|

4 18

4 19

) /  if n is even 

if n is odd 

T1(n) = 

1,

3,

Min(T (n ) n +1,T (n ) n ,1 1- + - + -

R

S
|

T
| 2 1 1)

 
if n = 2 

if n = 3 

otherwise 

n n ,

(n n ) / 4,

2

2

+ -

+ -

R
S
|

T|

4 8 4

4 9

) /  if n is even 

if n is odd 

 
 To determine the number of guesses for 2 × n AB games in the worst case, we 

consider the height instead of the external path length of the game tree. We can obtain the 
recurrences for H(n), H1(n), and H2(n) by slightly modifying the recurrences T(n), T1(n), 
and T2(n) shown in Table 1. Observing Fig. 6, the height of the game tree will be 1 plus 
the height of the highest among the five subtrees whose roots are the nodes for the five 
classes. Therefore, we have H(n) = Max(0, H2(n), H2(n), H(n − 2), 1) + 1 = Max(H2(n), 
H(n − 2)) + 1. We can also obtain this recurrence from the recurrence T(n) = T(n − 2) + 
2T2(n) + n2 − n + 1. That is, we can change coefficient 2 associated with the recurrence 
function T2(n) to 1, the cost (n2 − n + 1) for each iteration into 1, and the sum operations 
between the recurrence functions in the right side to Max function. The recurrences H1(n) 
and H2(n) can be obtained in a similar way. The recurrence relations and their solutions 
for H(n), H1(n), and H2(n) are shown in the Table 2. Theorem 4 demonstrates the 
minimum number of guesses required for 2 × n AB games in the worst case. 
 

Table 2. The recurrences and their solutions for H(n), H1(n), and H2(n). 

Functions Recurrence relations Solutions 

H(n) = 

2,

3,

Max(H(n 2),H (n)) 1,2- +

R

S
|

T
|

 
if n = 2 
if n = 3 
otherwise 

n/2 + 1 

H2(n) = 

2,

2,

Min(H (n 2),H (n 2)) 1,1 2− − +

R

S
|

T
|

 
if n = 3 
if n = 4 
otherwise 

n/2 

H1(n) = 

1,

2,

Min(H (n 2),H (n 1)) 1,1 1− − +

R

S
|

T
|

 
if n = 2 
if n = 3 
otherwise 

n/2 

 

Theorem 4  n/2 + 1 guesses are necessary and sufficient for 2 × n AB games in the 
worst case.  
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Proof: By induction, the recurrences H(n), H1(n), and H2(n) listed in Table 2 can be 
solved as collapsing sums, whose detailed proofs are shown in the Appendix.       � 

 
We apply the optimum strategy obtained in this section to the 2 × 5 AB game. The 

height of the game tree for the strategy used in section 2 for the 2 × 5 AB game is 4, 
which has already achieved the best result, H(n) = n/2 + 1 = 5/2 + 1 = 4, in Theorem 
4. Nevertheless, the strategy achieved in G2 of Fig. 3, i.e., choosing (2, 3) as the partition 
edge, is not the best choice if we consider the external path length. As proven in Theorem 
3, if we use the best strategy, i.e., choosing (0, y) or (y, 1) as the partition edge, where y 
∈ {2, 3, 4}, then the external path length L2 of the game tree will be 13 instead of 15. 
Thus, the total number of guesses required for the 2 × 5 AB game is L0 = (L1 + L2 + L3 + 
L4 + L5) + (the total number of edge in G0) = (0 + 13 + 13 + 13 + 1) + 20 = 60. Therefore, 
the minimum number of guesses required for G0 = 60/20 = 3, which achieves the result, 
(4n3 + 21n2 − 82n + 105)/12n(n − 1) = (4 * 53 + 21 * 52 − 82 * 5 + 105)/(12 * 5 * 4) = 3, 
in Theorem 3. 

5. CONCLUDING REMARKS 
 
In this paper we have presented a systematic methodology to obtain optimal 

strategies for 2 × n AB games in both the worst and expected cases. We have taken 
advantage of the properties of game trees, such as their height and external path length, 
to calculate the numbers of guesses required in the worst and expected cases for a 
deductive game. Furthermore, we have invented a graphic model to represent 2 × n AB 
games, and to discover some recursive and isomorphic properties in the graphic model. 
Using this approach, we can reduce the search space and obtain the optimal results in 
both the worst and expected cases. We summarize this paper’s results for 2 ≤ n ≤ 12 in 
Table 3. We hope that the methodologies proposed in this paper will prompt researchers 
to study other related problems. 
 

Table 3. The minimum number of guesses required for 2 × n AB games. 

Minimum number of guesses 
Worst case Expected case 

n 

n/2 + 1 
(4n3 + 21n2 

- 76n + 72)/12n(n - 1) if n is even, 
(4n3 + 21n2 - 82n + 105)/12n(n - 1) if n is odd 

2 2 1.5 
3 3 2.166666667 
4 3 2.5 
5 4 3 
6 4 3.433333333 
7 5 3.833333333 
8 5 4.25 
9 6 4.611111111 
10 6 5.011111111 
11 7 5.354545455 
12 7 5.742424242 
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APPENDIX: THE PROOFS OF THEOREMS 3 AND 4 
 
Theorem 3  The minimum number of guesses required for 2 × n AB games in the 
expected case is (4n3 + 21n2 - 76n + 72)/12n(n - 1) if n is even, and it is (4n3 + 21n2 - 
82n + 105)/12 n(n - 1) if n is odd. 
 
Proof: We begin by solving the recurrences T(n), T2(n), and T1(n) listed in Table 1. 

1. T (n)

1,

3,

Min(T (n 2) n 1,T (n 1) n 1

       if n = 2,

       if n = 3,  

),     otherwise.
1

1 1

=
− + + − + −

R

S
|

T
|

 

First, we shall prove by induction that  
 
T1(n) = T1(n - 2) + n + 1  
(i.e., Min(T1(n - 2) + n + 1, T1(n - 1) + n - 1) = T1(n - 2) + n + 1). 
 

Basis step: 
 
T1(4) = Min(T1(4 - 2) + 4 + 1, T1(4 - 1) + 4 - 1) = Min(6, 6), and 
T1(5) = Min(T1(5 - 2) + 5 + 1, T1(5 - 1) + 5 - 1) = Min(3 + 5 + 1, 6 + 5 - 1)  

= Min(9, 10), 
so T1(n) = T1(n - 2) + n + 1 is true for n = 4, 5. 
 

Inductive step: 
Assume that T1(k) = T1(k - 2) + k + 1 is true for 4 ≤ k < n. 
We want to prove that T1(n) = T1(n - 2) + n + 1 is also true. 

T (n) Min(T (n 2) n 1,T (n 1) n 1)

   Min(T (n 4) (n 1) (n 1),T (n 3) n (n 1))

   Min(T (n 6) (n 3) (n 1) (n 1),T (n 5) (n 2) n (n 1))

   
Min(T (2) 5 7 ... (n 1),T (3) 6 8 ... n (n 1)),

Min(T (3) 6 8 ... (n 1),T (2) 5 7 ... n (n 1)),

   if n is even,

   if n is odd.

   
Min((n 4n 8) / 4,(n 6n

1 1 1

1 1

1 1

1 1

1 1

2 2

= - + + - + -

= - + - + + - + + -

= - + - + - + + - + - + + -

=

+ + + + + + + + + + -

+ + + + + + + + + + -

R
S
T

=

+ - + -16) / 4),    if n is even,

Min((n 6n 9) / 4,(n 6n 15) / 4),    if n is odd.2 2
+ - + -

R
S
|

T|

 

Since (n2 + 4n - 8)/4 ≤ (n2 + 6n - 16)/4 and (n2 + 4n - 9)/4 ≤ (n2 + 6n - 15)/4 for n ≥ 
4, we conclude that T1(n) = T1(n - 2) + n + 1 is true, and that 
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T (n)
(n 4n 8) / 4,    if n is even,

(n n 9) / 4,    if n is odd.
1

2

2
=

+ -

+ -

R
S
|

T| 4
 

2. T (n)

3,

7,

Min(2T (n 2) n ,T (n ) n

    if n = 3,

    if n = 4,  

    otherwise.
2

1 2

=

- + - - + +

R

S
|

T
| 2 3 2 2 2),

 

Now, we shall prove by induction that T2(n) = 2T1(n - 2) + 2n - 3. 
Basis step: 

 
T2(5) = Min( 2T1(3) + 10 - 3, T2(3) + 10 + 2 ) = Min(6 + 10 - 3, 3 + 10 + 2)  

= Min(13, 15), and  
T2(6) = Min( 2T1(4) + 12 - 3, T2(4) + 12 + 2 ) = Min(12 + 12 - 3, 7 + 12 + 2)  

= Min(21, 21), 
so T2(n) = 2T1(n - 2) + 2n - 3 is true for n = 5, 6. 
 

Inductive step: 
Assume that T2(k) = 2T1(k - 2) + 2k - 3 is true for 5 ≤ k < n. 
We want to prove that T2(n) = 2T1(n - 2) + 2n - 3 is also true. 

T (n) Min(2T (n 2) 2n 3,T (n 2) 2n + 2)

Min(2T (n 2) 2n 3,2T (n 4) 2(n 2) 3 (2n + 2))

Min(2T (n 2) 2n 3,2T (n 4) 4n 5)

Min(2((n 2) 4(n 2) 8) / 4 2n 3,2((n 4) 4(n 4) 8) / 4 4n 5)),    if n is even,

Min(2((n 2) 4(n 2) 9) / 4 2n 3,2((n 4) 4(n 4) 9) / 4 4n 5)),    if n is odd.

Min((n 4n 18) / 2,(n 4n 18) / 2),    if n is even,

Min((n 4n 19) / 2,(n

2 1 2

1 1

1 1

2 2

2 2

2 2

2 2

= - + - - +

= - + - - + - - +

= - + - - + -

=

- + - - + - - + - - + -

- + - - + - - + - - + -

R
S
|

T|

=

+ - + -

+ - + 4n 19) / 2),    if n is odd.-

R
S
|

T|

 

Therefore, we conclude that T2(n) = 2T1(n - 2) + 2n - 3 is true, and that 

T (n)
(n 4n / 2,    if n is even,

(n n / 2,    if n is odd.
2

2

2
=

+ -

+ -

R
S
|

T|

18)

4 19)
 

3. T(n)

3,

13,

T(n 2) T (n) n n 1

    if n = 2,

    if n = 3,  

    otherwise.
2

2

=

- + + - +

R

S
|

T
|

2 ,

 

If n > 3 is even, then 

T(n) T(n 2) T (n) n n 1

       T(n 2) 2(n 4n 18) / 2 n n 1

       T(n 2) 2n 3n 17

2
2

2 2

2

= − + + − +

= − + + − + − +

= − + + −

2
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 = + − + − −

= + + − + − −

= + − + + − + − −

= + − + + − + − +

= + − + + − + − + − − + − +

= + − +

=

−

=

−

=

−

=

−

=

−

∑

∑

∑

∑ ∑

T(2) [2(n 2i) 3(n 2i) 17]

T(2) [2n 3n 17 8i 8ni 6i]

3 [(n 4) / 2 1](2n 3n 17) [8i 8ni 6i]

3 [(n 4) / 2 1](2n 3n 17) 8 i (8n 6) i

3 [(n 4) / 2 1](2n 3n 17) 8[(n 9n 26n 24) / 24] (8n 6)[(n 6n 8) / 8]

(4n 21n 76n 72) / 12

i 0

(n 4)/2
2

i 0

(n 4)/2
2 2

2

i 0

(n 4)/2
2

2

i 0

(n 4)/2
2

i 0

(n 4)/2

2 3 2 2

3 2

 

If n is odd, then 

T(n) T(n 2) T (n) n n 1

       T(n 2) 2(n 4n 19) / 2 n n 1

       T(n 2) 2n 3n 18

       T(3) [2(n 2i) 3(n 2i) 18]

       (4n 21n 82n 105) / 12

2
2

2 2

2

i 0

(n 5)/2
2

3 2

= − + + − +

= − + + − + − +

= − + + −

= + − + − −

= + − +
=

−

∑

2

 

Therefore, 

T(n)
(4n n ) / 2,        if n is even,

(4n n ) / 2,     if n is odd.

3 2

3 2
=

+ - +

+ - +

R
S
|

T|

21 76 72

21 82n 105
 

The necessary and sufficient conditions can be achieved based on the fact that our 
strategy always minimizes the external path length at each stage. Therefore, the 
minimum number of guesses required for 2 × n AB games is (4n3 + 21n2 - 76n + 72)/12 
if n is even, and (4n3 + 21n2 - 82n + 105)/12 if n is odd. By Lemma 3, because the 
number of possible candidates of 2 × n AB games is n(n - 1), we have to divide these 
two numbers by n(n - 1) in the expected case. This completes the proof.         � 

 
Theorem 4  n/2 + 1 guesses are necessary and sufficient for 2 × n AB games in the 
worst case.  
 
Proof: By induction, the recurrences H(n), H1(n), and H2(n) listed in Table 2 can be 
solved as collapsing sums, as follows.  
 
1. Since H1(n - 2) ≤ H1(n - 1), H1(n) = Min(H1(n - 2), H1(n - 1)) + 1 = H1(n - 2) + 1 for 

n > 3. 
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 H (n) H (n 2) 1

         H (n 4) 1 1

         ...

         
H (2) (n 2) / 2 (n 2) / 2 1,

H (3) (n 3) / 2 (n 3) / 2 2,

   if n is even,

   if n is odd.

         n / 2

1 1

1

1

1

= - +

= - + +

=

=

+ - = - +

+ - = - +

R
S
T

=

 

2. H2(n) = Min(H1(n - 2), H2(n - 2)) + 1 for n > 4. 

First, we shall prove by induction that  

H2(n) = H1(n - 2) + 1. 

Basis step: 

H2(5) = Min(H1(3) + 1, H2(3) + 1) = Min(3, 3), and 
H2(6) = Min(H1(4) + 1, H2(4) +1 ) = Min(2 + 1, 2 + 1) = Min(3, 3), 
so H2(n) = H1(n - 2) + 1 is true for n = 5, 6. 

Inductive step: 
Assume that H2(k) = H1(k - 2) + 1 is true for 5 ≤ k < n. 
We want to prove that H2(n) = H1(n - 2) + 1 is also true. 

H2(n) = Min(H1(n - 2), H2(n - 2)) + 1 
= Min(n/2/2, H1(n - 4) + 1) + 1 
= Min(n/2 - 1, n/2 - 1) + 1. 

Therefore, H2(n) = H1(n - 2) + 1 is true and 

H2(n) = n/2. 
  

3. H(n) = Max(H(n - 2),H2(n)) + 1 for n > 3. 

Now, we shall prove by induction that  

H(n) = H2(n) + 1. 
 
Basis step: 

H(4) = Max(H(2), H2(4)) +1 = Max(2, 2) + 1, and  
H(5) = Max(H(3), H2(5)) +1 = Max(3, 3) + 1, 
so H(n) = H2(n) + 1 is true for n = 4, 5. 

 
Inductive step: 

Assume that H(k) = H2(k) + 1 is true for 4 ≤ k < n. 
We want to prove that H(n) = H2(n) + 1 is also true. 
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H(n) = Max(H(n - 2), H2(n)) + 1 
= Max(H2(n - 2) + 1, n/2) + 1 
= Max(n/2, n/2) + 1. 

 
Therefore, H(n) =H2(n) + 1 is true and 
 
H(n) = n/2 + 1.                                                   � 
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