
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 20, 105-126 (2004)

105

Optimal Algorithms for 2 × n AB Games
– A Graph-Partition Approach*

SHAN-TAI CHEN AND SHUN-SHII LIN+

Department of Information and Computer Education
+Graduate Institute of Computer Science and Information Engineering

National Taiwan Normal University
Taipei, 106 Taiwan

E-mail: linss@csie.ntnu.edu.tw

This paper presents new and systematic methodologies to analyze deductive games

and obtain optimal algorithms for 2 × n AB games, where n ≥ 2. We have invented a
graphic model to represent the game-guessing process. With this novel approach, we find
some symmetric and recursive structures in the process. This not only reduces the size of
the search space, but also helps us to derive the optimum strategies more efficiently. By
using this technique, we develop optimal strategies for 2 × n AB games in the expected
and worst cases, and are able to derive the following new results: (1) n/2 + 1 guesses
are necessary and sufficient for 2 × n AB games in the worst case, (2) the minimum
number of guesses required for 2 × n AB games in the expected case is (4n3 + 21n2 - 76n
+ 72)/12n(n - 1) if n is even, and (4n3 + 21n2 - 82n + 105)/12n(n - 1) if n is odd.

The optimization of this problem bears resemblance with other computational
problems, such as circuit testing, differential cryptanalysis, on-line models with
equivalent queries, and additive search problems. Any conclusion of this kind of
deductive game may be applied, although probably not directly, to any of these problems,
as well as to any other combinatorial optimization problem.

Keywords: AB game, algorithms, game tree, mastermind, search strategies

1. INTRODUCTION

The game of Mastermind is a deductive game for 2 players: a codemaker and a
codebreaker. The codemaker chooses a secret code consisting of four pegs out of six
possible colors. Repeated colors are allowed, so the set of possible codes is 64 = 1296.
The codebreaker then tries to guess the code. After each guess, the codemaker responds
with a hint that consists of black and white pegs; a black peg means that a peg in the
codebreaker’s guess is correct in both position and color; a white peg means that a peg in
the guess is correct in color but not in position; and finally, no pegs means that there are
pegs in the guess which are not correct in color. The purpose of the game is to solve the
code (i.e., get four black pegs) in the smallest number of guesses.

Another well-known deductive game in England and Asia, called “Bulls and Cows”
[1] or the AB game, is a variant of the Mastermind game. The difference is that all the

Received January 31, 2003; accepted July 4, 2003.
Communicated by Ming-Syan Chen.
* A preliminary version [15] of this paper has been presented at the 2002 International Computer Symposium,

2002.

SHAN-TAI CHEN AND SHUN-SHII LIN

106

digits of the code in the game must be distinct, but 10 colors are allowed. Hence, the set
of possible codes is the number of permutations: P(10, 4) = 10 * 9 * 8 * 7 = 5040. Now
we restate the game with a more precise description. The codemaker chooses a secret
code (s1, s2, s3, s4). After each guess (g1, g2, g3, g4) made by the codebreaker, the
codemaker responds with a pair of numbers [A, B], where A is the number of “direct
hits,” i.e., the number of positions j such that sj = gj, and B is the number of “indirect
hits,” i.e., the number of positions j such that sj π gj but sj = gk for some position k π j. For
example, if the secret code is (1, 2, 3, 4) and the guesses are (3, 1, 5, 4) and (3, 1, 4, 5),
then the responses are [1, 2] and [0, 3], respectively. The goal of the codebreaker is,
based on the responses, to minimize the number of guesses needed, and to find the secret
code.

Over the past three decades, much research has been done on this kind of game.
Knuth [1] demonstrated a strategy for the Mastermind game that requires at most five
guesses in the worst case and 4.478 in the expected case. The strategy used in [1] is to
choose the guess that minimizes the maximum number of remaining possibilities at every
stage. Later, Irving [2] and Nerwirth [3] used sophisticated heuristic strategies to improve
the bounds in the expected case to 4.369 and 4.364, respectively. Finally, Koyama and
Lai [4] used a recursive backtracking method to determine the optimal strategy for
Mastermind, where the expected number of guesses is 4.34. Also, variants of the
Mastermind game have been studied in [5, 6], and [7]. Furthermore, in [8, 9] and [10],
the authors used evolutionary algorithms and genetic algorithms to solve related
problems. More recently, Roche [11] analyzed the generalized Mastermind and obtained
asymptotical bounds under some conditions. Kabatianski and Thorpe [12] investigated
the Mastermind game and its related applications based on coding theorem.

Merelo et al. [10] transferred the optimal strategy for Mastermind game to a
combinatorial optimization problem. It bears resemblance to other computational
problems, such as circuit testing, differential cryptanalysis, on-line models with
equivalent queries, and additive search problems. Consequently, any conclusion of this
kind of deductive game may be applied, although probably not directly, to any of these
problems, as well as to any other combinatorial optimization problem.

To describe and compare the variants of these games, we briefly introduce the
notation defined in [5]. The Mastermind game is denoted by MM4 × 6, signifying four
pegs and six colors with repetition of colors allowed. The AB game is denoted by MM4
× 10N, signifying four digits (pegs) and ten symbols (colors) with repetition of symbols
prohibited. Likewise, MM2 × nN signifies two digits and an arbitrary number n of
symbols with repetition of symbols prohibited.

Because the complexity of these games grows at an exponential rate, no optimal
strategy for them when they have higher dimensions (i.e., when the games have more
than 4 pegs and 6 colors, i.e., 4 × 6) has yet been found. In this paper, we develop a
systematic methodology to discover the optimal strategies for general AB games with 2
digits—MM2 × nN games (or 2 × n AB games in this paper, where n ≥ 2).

This paper is organized as follows. In section 2, we introduce some properties of
game trees and use the binary search technique to determine the optimum strategy for a
simple deductive game. In section 3 we present the graphic model by means of a MM2 ×
5N game. The optimal strategy for 2 × n AB games is developed in section 4. Section 5
contains our concluding remarks.

OPTIMAL ALGORITHMS FOR 2 × n AB GAMES – A GRAPH-PARTITION APPROACH

107

2. AN OPTIMUM STRATEGY FOR A SIMPLE DEDUCTIVE GAME

In this section, we deal with a simple type of deductive games, 1 × n games. By

means of some properties of game trees, we will show how to determine the minimum
numbers of guesses required both in the expected and the worst case for the game. By
means of this comparatively simple work, we present some fundamental concepts that
can be applied to develop the optimal strategy for 2 × n AB games in section 3 and
section 4.

2.1 The Game Trees for Deductive Games

In 1 × n deductive games, the codemaker chooses a secret number S, S ∈ {0, 1,

2, …, n - 1}. After each guess gi made by the codebreaker, the codemaker responds with
a hint Hi , Hi ∈ {<, =, >}, three elements of which refer to S < gi, S = gi, and S > gi,
respectively. The goal of the codebreaker is, based on the hints, to minimize the number
of guesses required, and to find the secret number. Obviously, the guessing process for
this game can be translated into a search problem. We can obtain the optimum strategy
for this game by using the binary search technique, which is shown in Theorem 1. In
order to demonstrate how to calculate the number of guesses required in the worst and
expected cases for 1 × n games, we illustrate our strategy by way of a 1 × 16 game, the
game tree T which is shown in Fig. 1.

In Fig. 1, the number in each node represents each guess gi. We start by comparing
the secret number S with the middle key of the possible secret numbers, which is 7 in the
root in this case. According to the hint given by the codemaker, we decide which subtree
should be chosen to guess next, and the same procedure can be used again until S is hit.
More precisely, if the secret code S is equal to gi, then our strategy goes down to the leaf
under node gi, which means we hit the code and the game is finished. If S < gi, then our
strategy follows the left subtree; similarly if S > gi, the right subtree is used. For example,
if S = 5, our guessing sequence will be 7, 3, and then 5 because S < 7, S > 3, and S = 5,
where 3 guesses are required to hit the secret number. On the other hand, if S = 15, then
our guessing sequence will be 7, 11, 13, 14, and then 15, where 5 guesses are required to
finish the game. By doing so as shown in Fig. 1, we can easily obtain the following two
observations. These observations can be applied to analyze arbitrary deductive games.

2

2

0

0

1

1

6

6

4

4

5

5

3

3

=
7

7

< >

12 10

10

8

8

9

9

14

14

12

13

13

11

11

15

15
Fig. 1. A game tree T for a 1 × 16 game, where the binary search strategy is used.

SHAN-TAI CHEN AND SHUN-SHII LIN

108

Observation 1 The number of guesses required in the worst case for a game is H,
where H is the height of the game tree, i.e., the length of a longest path from the root to a
leaf in the game tree. For example, H = 5 in Fig. 1.

Observation 2 The number of guesses required in the expected case for a game is L/n,
where L is the external path length [13] of the game tree; i.e., the sum of the distances
from the root to each leaf in the game tree. For example, in Fig. 1, L = 1 * 1 + 2 * 2 + 3 *
4 + 4 * 8 + 5 * 1 = 54 and the number of guesses required in the expected case is L/n =
54/16 = 3.375.

Notice that if we remove all the leaf nodes from Fig. 1, then the game tree built by
the binary search technique is always a full binary tree, as shown in Fig. 2. In the
following paragraphs, to take advantage of the properties of binary trees, we ignore the
leaf nodes of the game tree, thus forming a full binary tree Tb, whose height and total
path length are denoted by Hb and Lb, respectively, where Lb is the sum of the distances
from the root to each node in the game tree. It is easy to show that the number of guesses
required in the worst case and the expected case for a 1 × n game will be Hb + 1 and Lb/n
+ 1, respectively.

3

1 5

0 2 4 6

=
< > 7

11

9 13

14 8

15

10 12

Fig. 2. A full binary game tree Tb obtained by removing all the leaf nodes from the game tree T

shown in Fig. 1.

2.2 The Minimum Number of Guesses Required for a Deductive Game

In Theorems 1 and 2, we will present an optimum strategy based on the binary
search technique and derive the minimum numbers of guesses required in the worst case
and expected case. Before that, we will look at a property [14] concerning the minimum
total path length in a binary tree, which we need to prove Theorem 1, as shown in
Lemma 1.

Lemma 1 A binary tree has the minimum total path length if and only if all its external
nodes occur on at most two adjacent levels.

Proof [14]: Omitted. �

Theorem 1 log2n + 1 guesses are necessary and sufficient for 1 × n games in the
worst case.

OPTIMAL ALGORITHMS FOR 2 × n AB GAMES – A GRAPH-PARTITION APPROACH

109

Proof: The necessary and sufficient conditions can be proven by the following two facts:
First, the binary game tree, Tb, built by the binary search technique is always full, which
means that Tb always has minimum height. Second, the height Hb of a full binary tree
with n nodes is log2n. Therefore, the number of guesses required in the worst case is Hb

+ 1 = log2n + 1. This then proves the result. �

Theorem 2 The minimum number of guesses required for 1 × n games in the expected
case is ((n + 1)(log2n - 1) + 2)/n + 1 if n = 2k

- 1, where k ∈ Z; and it is ((n + 1)
log2n - 2log

2
n+1 + 2)/n + 1 if n ≠ 2k

- 1, where k ∈ Z.

Proof: Necessary: Since the game tree, Tb, built by binary search techniques is always
full, all external nodes of Tb occur on at most two adjacent levels. By Lemma 1, the
necessary condition is proven.

Sufficient: We divide the proof into two cases to prove this property.

Case 1. If n = 2k

- 1, then the game tree Tb for the game is a complete binary tree. In this

case L 2 n n nb
=1

n
n

= = - + = + - +Â
+ i * i

i

log
(log)(log) * ()(log) .

2

2
2

1
21 2 2 1 1 2

The number of guesses required is Lb/n + 1 = ((n + 1)(log2n - 1) + 2)/n + 1.
Case 2. If n ≠ 2k

- 1, then the game tree Tb for the game is full but not complete. The
number of nodes at the bottom level is only n - (2log

2
n - 1) rather than 2log

2
n as

in a complete binary tree, and the distance from the root to each node in this level
equals log2n. Therefore, we should subtract the quantity log2n * (2log

2
n - (n -

(2log
2
n - 1))/n = log2n * (2log

2
n+1 – n – 1)/n from the formula obtained in Case

1. That is, Lb = 2(log
2
n+1) (log2n - 1) + 2 - (log2n * (2log

2
n+1 – n – 1)) = (n + 1)

log2n - 2log
2
n+1 + 2. This completes the proof. �

We can now apply the results of Theorems 1 and 2 to a 1 × 15 game, the game tree

for which is complete, and to a 1 × 16 game, the game tree for which is not complete. For
the 1 × 15 game, the numbers of guesses required in the worst and expected cases are 4
and ((15 + 1)(log215 - 1) + 2)/15 + 1 = (16 * 2 + 2)/15 + 1 = 3.2667, respectively. For
the 1 × 16 game, the numbers of guesses required in the worst and expected cases are 5
and ((1 * 2 + 2 * 4 + 3 * 8 + 4 * 16) - (4 * 15))/16 + 1 = 3.375, respectively.

3. A NEW GRAPHIC MODEL

In this section, we present a graphic model to represent the guessing process of the
deductive games. The main idea behind the proposed method is to represent the set of
codewords compatible with the responses given so far as graphs for 2 × n games. By
using this methodology, we can easily discover the symmetric, isomorphic, and recursive
properties to reduce the search space of the game. Furthermore, we are able to develop an
optimal strategy for 2 × n AB games in the next section.

SHAN-TAI CHEN AND SHUN-SHII LIN

110

3.1 The Graphic Model

First, we introduce the graphic model by means of a 2 × 5 AB game for simplicity.

We start with some definitions. The game tree for the 2 × 5 AB game is shown in Fig. 3.

G0

1

0

4

2

3

1

0

4

2

3

[2,0]; G1 [1,0]; G2 [0,1]; G3 [0,0]; G4 [0,2]; G5

1

0

4

2

3

1

0

4

2

3

1

0

4

2

3

1

0

4

2

3

1

0

4

2

3

[2,0] [1,0] [0,1] [0,0] [0,2]

1

0

4

2

3

1

0

4

2

3

1

0

4

2

3

1

0

4

2

3

Fig. 3. A graphic model to represent the results after the first guess and one of second guesses for 2

× 5 AB game, where (0, 1) and (2, 3) are the partition edges in G0 and G2, respectively.

Any moment in the game is expressed by a node, represented by a game graph Gi =

<Vi, Ei>, in the game tree. The root G0 = <V0, E0> of the game tree is a complete directed
graph with 5 vertices and 20 edges. We map the game graphs to 2 × n AB games as
follows:

Vertex: Each vertex in a game graph Gi corresponds to a symbol in the AB game; for
example, 0, 1, 2, 3, and 4 are five symbols in the 2 × 5 AB game. Notice that we use the
term “node” in the game tree and “vertex” in the game graphs.

Edge: Each directed edge in a game graph Gi refers to a possible codeword, so there are 5
× 4 = 20 edges in the root G0 of the game tree. In the medium stages, the edges in a game
graph Gi, i ≥ 1, refer to the remaining candidates, i.e., unidentified codewords.

OPTIMAL ALGORITHMS FOR 2 × n AB GAMES – A GRAPH-PARTITION APPROACH

111

Partition edge: the edge codebreaker chooses to partition the game graph; for instance,
the dashed arrow (0, 1) shown in G0 of Fig. 3 refers to the first guess (0, 1) in a 2 × 5 AB
game. Notice that, according the rules of this game, we can choose arbitrary partition
edge e ∈ E0 (not necessarily e ∈ Ei) in the medium stage, for example, (2, 3) can be
chosen as the partition edge in G2.

Each class, represented as a node in the game tree, in level 2 refers to one response

[A, B] after guessing (0, 1) in the game. The five classes in level 2, i.e., [2, 0], [1, 0], [0,
1], [0, 0], and [0, 2], partition the set of 20 edges in the complete directed graph G0 in the
root node. Moreover, only one edge (0, 1) remains in G1, which refers to class [2, 0]. It
means that the edge (0, 1) was hit. On the other hand, if there is only one edge in a class,
except for the class [2, 0], then this edge is said to be identified, and one more guess is
required to hit it. For example, there is only one edge (1, 0) in G5. We need one more
guess (1, 0) to finish the AB game.

3.2 The Partition Principles

Now we will present how to partition the edges on the graph. Remember that a

game graph Gi is a directed graph. If the partition edge is (j, k), then vertex j is called the
origin vertex, and vertex k is called the destination vertex. We can partition all the edges
in the game graph Gi according to the following simple rules:

(1) The outgoing edges (j, m) from the origin vertex j and the incoming edges (m, k) to

the destination vertex k are classified as [1, 0], where m π k, m π j.
(2) The outgoing edges (k, m) from the destination vertex k and the incoming edges (m, j)

to the origin vertex j are classified as [0, 1] , where m π j, m π k.
(3) The edges that are not adjacent to the origin and destination vertices are classified as

[0, 0].
(4) The edge (j, k) that is both an outgoing edge from the origin vertex j and an incoming

edge to the destination vertex k is classified as [2, 0].
(5) The edge (k, j) that is both an outgoing edge from the destination vertex k and an

incoming edge to the origin vertex j is classified as [0, 2].

As depicted in Fig. 3, at the initial stage, the partition edge (0, 1) in G0 partitions the

20 edges into five classes. The outgoing edges from the origin vertex 0, i.e., (0, 2), (0, 3),
and (0, 4), and incoming edges to the destination vertex 1, i.e., (2, 1), (3, 1), and (4, 1),
are classified into class [1, 0], i.e., G2. The edge (0, 1) is both an incoming edge to vertex
1 and an outgoing edge from vertex 0, so it is classified into class [2, 0], i.e., G1. The
other classes can be obtained in the same way.

3.3 A Strategy for the 2 × 5 AB Game

Now we will describe the goals in this paper and show how we can achieve them

using the graphic model. By means of the partition rules given above, we can translate
the game-guessing process into a sequence of graph partition and tree traversal
procedures. Notice that all the leaves in the game tree are “hits nodes”; i.e., one candidate

SHAN-TAI CHEN AND SHUN-SHII LIN

112

is hit in each of the leaf nodes. Therefore, we can directly apply the results described in
Observations 1 and 2 to obtain the optimal strategy for 2 × n AB games. Our goals are,
thus, to minimize the height H of the game tree for the worst case and to minimize the
external path length L of the game tree in the expected case. The key to achieving these
goals is simply to choose the best partition edge to partition the remaining edges at each
stage, like playing the real game.

In Lemma 2, we show how to calculate the total number of guesses required to hit 2
remaining candidates (or 2 remaining edges) in a class (or a game graph). This lemma
can be applied to m × n AB games with arbitrary m, n.

Lemma 2 If a game graph that is the root node of a game tree contains only two
remaining edges, then the minimum possible values for the external path length L and the
height H of the game tree are 3 and 2, respectively.

Proof: Sufficient: We can choose one of the two remaining edges as the partition edge.
Then, this edge will be hit, and the other edge will be identified and one more guess is
required. Therefore, a possible value for the external path length L of the game tree is 1 +
2 = 3, and that for the height H of the game tree is 2.

Necessary: For the situation where two edges remain in a game graph, there are only
three possibilities for choosing the partition edge.

Case 1. Choose one of these two remaining edges as the partition edge. As described in

the sufficient condition, the external path length L of the game tree is 1 + 2 = 3,
and the height H of the game tree is 2.

Case 2. Choose an edge adjacent to at least one of the two remaining edges. The best
result of these guesses is able to identify the two remaining edges simultaneously,
each of which requires one more guess to be hit. So the external path length L of
the game tree is 2 + 2 = 4, and the height H of the game tree is 2.

Case 3. Choose an edge that is not adjacent to the two remaining edges. The result of this
guess makes no contribution to further guesses since the game graph after the
guess is the same as the one before the guess. Thus, we can omit this possibility.

Therefore, to hit 2 remaining edges in a game graph (or a class), the external path length
L of the game tree must be at least 3, and the height H of the game tree must be at least 2.
In other words, the total number of guesses required to hit the two remaining candidates
is at least 3. Hence, the number of guesses in the expected case is 3/2 = 1.5. In addition,
the number of guesses in the worst case is at least 2. �

Now we will present a strategy for playing the 2 × 5 AB game on the graphic model
and show how to calculate the external path length L and the height H of the game tree.
In this way, we can develop sophisticated strategies for higher dimension games. To
demonstrate the variety of strategies, the strategies used in the following examples are
not necessarily optimal choice. Observing the first guess in Fig. 3, since G0 is a
symmetric and complete graph, choosing any edge as the partition edge will obtain the
same result. We choose (0, 1) as the partition edge. After the first guess, there is only one
remaining edge (0, 1) in G1 (class [2, 0]). Notice that Fig. 3 shows only one leaf G1, and
the distance from the root G0 to G1 is 1. Therefore, edge (0, 1) only requires one guess to

OPTIMAL ALGORITHMS FOR 2 × n AB GAMES – A GRAPH-PARTITION APPROACH

113

be hit. Although the edge (1, 0) is also the only edge in G5 (class [0, 2]), one more guess
is required to “hit” the edge (1, 0), so it requires 2 guesses. Furthermore, it is easy to
show that the game graphs G2 and G3 for classes [1, 0] and [0, 1] are isomorphic; that is,
if we exchange vertex 0 and vertex 1 in the game graph G2 for class [1, 0], then it will be
equivalent to the game graph G3 for class [0, 1]. Intuitively, they have the same number
of guesses in both the worst case and the expected case. Therefore, we will concentrate
on classes [1, 0] and [0, 0]. In the following paragraphs, we describe the general
procedures used to calculate the number of guesses for the 2 × 5 AB game in the worst
and expected cases.

In G2 of Fig. 3, the partition edge (2, 3) partitions the remaining six edges into three
nonempty classes, [1, 0], [0, 1], and [0, 0], each of which has two remaining edges. By
Lemma 2, the two remaining edges can be hit in one and two more guesses, respectively.
Therefore, the external path length for G2, L2 = 2 + 3 + 2 + 3 + 2 + 3 = 15; hence, by
Observation 2, the expected number of guesses for G2 is L2/6 = 2.5.

Now we will consider how to calculate the total number of guesses (or the external
path length L4) for the 2 × 3 AB game in the expected case. In G4 shown in Fig. 4, there
is a complete subgraph with three vertices and six directed edges, which represents the 2
× 3 AB game. If (4, 2) is chosen as the partition edge, as shown in Fig. 4, we need 1, 2, 3,
2, 3, and 2 guesses to hit edges (4, 2), (4, 3), (3, 2), (3, 4), (2, 3), and (2, 4), respectively.

Therefore, the external path length L4 for the node G4 is L4 = 1 + 2 + 3 + 2 + 3 + 2 =
13; thus, the expected number of guesses for the game graph G4 is L4/6 = 13/6.

Finally, we combine Figs. 3 and 4. If we choose (2, 3) and (4, 2) as the partition
edges in G2 and G4, respectively, then the height of the game tree is 4; that is, by using
our analysis technique the number of guesses in the worst case is 4. The total number of
guesses L0 for G0 can be computed as follows: L0 = (L1 + L2 + L3 + L4 + L5) + (the total
number of edges in G0) = (L1 + 1) + (L2 + 6) + (L3 + 6) + (L4 + 6) + (L5 + 1) = (0 + 1) +
(15 + 6) + (15 + 6) + (13 + 6) + (1 + 1) = 64, where L1 + 1 is for G1, L2 + 6 is for G2, and
so on. Therefore, the expected number of guesses for G0 = 64/20 = 3.2.

4. AN OPTIMUM STRATEGY FOR 2 × n AB GAMES

In this section, the graphic model described in section 3 is used to develop an

optimum strategy for 2 × n AB games. We simplify the graphic representation for the
game and define three types of subgraphs, denoted by Ga(k), Gb(k), and Gc(k) in Figs. 5
(b), 5 (c), and 5 (d), respectively. The rectangle shown in Fig. 5 (a) and the ellipse shown
in Fig. 5 (b), denoted by “i～j” inside, refer to a graph with only j - i + 1 separate
vertices named i, i + 1, …, j, and a complete directed graph with j - i + 1 vertices named
i, i + 1, …, j, or “all to one” edges, each of which connects the vertex outside the
rectangle to all the vertices inside the rectangle. Hence, there are n - 1 and 2(n - 2) edges
in Figs. 5 (c) and 5 (d), respectively.

Definition 4.1 T(k), T1(k), and T2(k) are the minimal external path lengths of the game
trees whose roots are the nodes for Ga(k), Gb(k), and Gc(k), respectively. In a similar way,
we define H(k), H1(k), and H2(k) as the minimal possible values for the height of the
game trees for Ga(k), Gb(k), and Gc(k), respectively.

SHAN-TAI CHEN AND SHUN-SHII LIN

114

1

0

4

2

3

[2,0]

1

0

4

2

3

1

0

4

2

3

[1,0]

1

0

4

2

3

[0,0]

1

0

4

2

3

[0,1]

1

0

4

2

3

[0,2]

1

0

4

2

3

[2,0]

1

0

4

2

3

[2,0]

1

0

4

2

3

[0,1]

1

0

4

2

3

[0,1]

1

0

4

2

3

[2,0]

1

0

4

2

3

[2,0]

1

0

4

2

3

[2,0]

G4

Fig. 4. The game tree for G4, which represents the 2 × 3 AB game. The total number of guesses for

the six edges is 13; the expected number of guesses for the graph is 13/6.

(d) Gc(k)

(b) Ga(k)

 0～k-1

0

1

2～k-1 or

(c) Gb(k)

(a)

0～k-1

0

1～k-1

0

1～k-1

Fig. 5. (a) A graph with k vertices and no edges. (b) A complete directed graph, Ga(k), with k

vertices and k(k - 1) edges. (c) Two types of graphs, Gb(k)s, with k - 1 edges. (d) A graph,
Gc(k), with 2(k - 2) edges.

OPTIMAL ALGORITHMS FOR 2 × n AB GAMES – A GRAPH-PARTITION APPROACH

115

Lemma 3 The minimal number of guesses required for 2 × n AB games is T(n)/n(n - 1)
for the expected case and H(n) for the worst case.

Proof: Since the initial state for 2 × n AB games is Ga(n), by Definition 4.1, the minimal
external path length and the minimal height of the game tree are T(n) and H(n),
respectively. From Observations 1 and 2, the results of this property follow. �

Now we will demonstrate our procedure for deriving T(n) and H(n), by which we
can obtain the optimal strategies for 2 × n AB games in the expected and worst cases. At
the initial state, since the graph Ga(n) is a symmetric and complete graph, we can choose
any edge, (0, 1) in this example, as the partition edge; consequently, we will obtain the
same result. The game tree after the first guess is shown in Fig. 6. The minimal numbers
of further guesses required for classes [2, 0], [1, 0], [0, 1], [0, 0], and [0, 2] (the external
path lengths of the subtrees whose roots are the nodes for classes [2, 0], [1, 0], [0, 1], [0,
0], and [0, 2]) are 0, T2(n), T2(n), T(n - 2), and 1, respectively. In addition, since the
number of guesses for each remaining candidate (the length from root to each leaf) will
be increased by one after the first guess, we have to add n(n - 1) to compute T(n), where
n(n - 1) is the number of edges before the guess(i.e., in the root node). Hence, T(n) = 0 +
T2(n) + T2(n) + T(n - 2) + 1 + n(n - 1) = T(n - 2) + 2T2(n) + n2

- n + 1.

[2,0] [1,0] [0,1] [0,0] [0,2]

2～n-1

0～n-1

0

1

2～n-1

0

1

2～n-1

0

1

0

1

Fig. 6. The game tree for 2 × n AB games, where (0, 1) is chosen as the partition edge. T(n) = 0 +

T2(n) + T2(n) + T(n - 2) + 1 + n(n - 1) = T(n - 2) + 2T2(n) + n(n - 1) + 1.

In Fig. 6, since the game graphs for classes [1, 0] and [0, 1] are isomorphic, and

since the game graph for class [0, 0] can be solved recursively, we only consider the class
[1, 0]. The four possible ways to partition the class [1, 0], i.e., Gc(n), and their
recurrences are described as follows:

1. Choose (0, y) or (y, 1) as the partition edge, where y ∈ {2, 3, 4, …, n - 1}. The game

tree after the first guess is shown in Fig. 7, where we choose (0, 2) as the partition
edge. Now, the numbers of further guesses required for the classes [2, 0], [1, 0], [0, 1],
and [0, 0] are 0, T1(n - 2), 1, and T1(n - 2), respectively. In addition, we have to add
2(n - 2) to compute T2(n), where 2(n - 2) is the number of edges before the guess (0,
2). Therefore, T2(n) ≤ 0 + T1(n - 2) + 1 + T1(n - 2) + 2(n - 2) = 2T1(n - 2)+ 2n - 3.

SHAN-TAI CHEN AND SHUN-SHII LIN

116

[2,0] [1,0] [0,1] [0,0] [0,2]

0

1

3～n-1 2

2

1

0

2
1

3～n-1

0

3～n-1

Fig. 7. The game tree for graph Gc(n), where (0, 2) is chosen as the partition edge. The notation

“∅” in class [0, 2] refers to an empty set. T2(n) ≤ 0 + T1(n - 2) + 1 + T1(n - 2) + 2(n - 2) =
2 T1(n - 2) + 2n - 3.

2. Choose (y, 0) or (1, y) as the partition edge, where y ∈ {2, 3, 4, …, n - 1}. For

example, in Fig. 8, we choose (2, 0) as the partition edge. The numbers of further
guesses required for the classes [2, 0], [1, 0], [0, 1], [0, 0], and [0, 2] are 0, 1, T1(n - 2),
T1(n - 2), and 1, respectively. Therefore, T2(n) ≤ 1 + T1(n - 2) + T1(n - 2) + 1 + 2(n -
2) = 2 T1(n - 2) + 2n - 2. Choosing (1, 2) as the partition edge will lead to the same
result according to similar analysis, so we omit it here.

[2,0] [1,0] [0,1] [0,0] [0,2]

2

1

0

2

0

1

3～n-1 2

1

3～n-1

0

3～n-1

Fig. 8. The game tree for graph Gc(n), where (2, 0) is chosen as the partition edge. T2(n) ≤ 0 + 1 +

T1(n - 2) + T1(n - 2) + 1 + 2(n - 2) = 2 T1(n - 2) + 2n - 2.

3. Choose (y1, y2) as the partition edge, where y1, y2 ∈{2, 3, 4, …, n - 1} and y1 π y2. For

example, in Fig. 9, we choose (2, 3) as the partition edge. Now, T2(n) ≤ 3 + 3 + T2(n -
2) + 2(n - 2) = T2(n - 2) + 2n + 2.

OPTIMAL ALGORITHMS FOR 2 × n AB GAMES – A GRAPH-PARTITION APPROACH

117

[2,0] [1,0] [0,1] [0,0] [0,2]

4～n-1

1

4～n-1

0

0

12

3

0

12

3 0

12

3
Fig. 9. The game tree for graph Gc(n), where (2, 3) is chosen as the partition edge. T2(n) ≤ 3 + 3 +

T2(n - 2) + 2(n - 2) = T2(n - 2) + 2n + 2.

4. Choose (0, 1) or (1, 0) as the partition edge. As shown in Fig. 10, if we choose (0, 1) as

the partition edge, then there is only one nonempty class [1, 0], which contains all 2(n
- 2) edges; similarly, if (1, 0) is chosen, the only nonempty class is [0, 1]. That is, we
cannot derive further partition from this guess and also have to add 2(n - 2) to
compute T2(n). Therefore, T2(n) ≤ T2(n) + 2(n - 2).

[2,0] [1,0] [0,1] [0,0] [0,2]

0

1

2～n-1

1

0

2～n-1

Fig. 10. The game tree for graph Gc(n), where (0, 1) is chosen as the partition edge. T2(n) ≤ T2(n) +

2(n - 2) = T2(n) + 2n - 4.

Observing the above recurrences, the total number of guesses for strategy 2 is

always one more than that for strategy 1. In addition, we cannot derive further partition
by using strategy 4. Therefore, we can ignore strategies 2 and 4 here. Now, we can
simply investigate strategies 1 and 3 to determine which one is the better. That is, we can
determine the optimal strategy for T2(n) = Min(2T1(n - 2) + 2n - 3, T2(n - 2) + 2n + 2).

Now we will focus on the graph Gb(n). There are two types of graphs, between
which only the edge direction is different, as shown in Fig. 5 (c). Hence, we can obtain
the same numbers of further guesses for these two types of graphs by changing the
direction of the partition edge. Therefore, without loss of generality, we only need to

SHAN-TAI CHEN AND SHUN-SHII LIN

118

consider one type of graph. Now we will describe the three possible ways to partition
Gb(n) and their recurrences as follows:

(i) Choose (0, y) as the partition edge, where y ∈ {1, 2, 3, …, n - 1}. In Fig. 11 (a), we
choose (0, 1) as the partition edge, which partitions the graph Gb(n) into two
nonempty classes, [2, 0] and [1, 0]. The numbers of further guesses for these two
classes are 0 and T1(n - 1), respectively. In addition, there are n - 1 edges in the graph
Gb(n). Therefore, T1(n) ≤ 0 + T1(n - 1) + n - 1= T1(n - 1) + n - 1.

[1,0] [0,0] [0,1] [2,0] [1,0]

(b) (a)

0

2～n-1

0

3～n-1

0

1

2～n-1

0

1

0

1

3～n-1

0

12

0

2

Fig. 11. (a) Strategy (i), where (0, 1) is the partition edge. T1(n) ≤ 0 + T1(n - 1) + n - 1. (b) Strategy

(iii), where (1, 2) is the partition edge. T1(n) ≤ 1 + T1(n - 2) + 1 + n - 1.

(ii) Choose (y, 0) as the partition edge, where y ∈ {1, 2, 3, …, n - 1}. We choose (1,0)

as the partition edge, which partition the graph Gb(n) into two nonempty classes, [0,
2] and [1, 0]. The numbers of further guesses for these two classes are 1 and T1(n -
1), respectively. Therefore, T1(n) ≤ 1 + T1(n - 1) + n - 1 = T1(n - 1) + n.

(iii) Choose (y1, y2) as the partition edge, where y1, y2 ∈ {1, 2, 3, …, n - 1} and y1 π y2.
For example, we choose edge (1, 2) as the partition edge, as shown in Fig. 11(b).
Now, T1(n) ≤ 1 + T1(n - 2) + 1 + n - 1 = T1(n - 2) + n + 1.

From the above analysis, we have T1(n) =Min(T1(n − 2) + n + 1, T1(n − 1) + n, T1(n

− 1) + n − 1) = Min (T1(n − 2) + n + 1, T1(n − 1) + n − 1).
To minimize the total number of guesses, we list the recurrences developed above

and their solutions in Table 1. Theorem 3 demonstrates the minimum number of guesses
required for 2 × n AB games in the expected case.

Theorem 3 The minimum number of guesses required for 2 × n AB games in the
expected case is (4n3 + 21n2 − 76n + 72)/12n(n − 1) if n is even, and it is (4n3 + 21n2 −
82n + 105)/12 n(n − 1) if n is odd.

Proof: By induction, the recurrences T(n), T2(n), and T1(n) listed in Table 1 can be solved
as collapsing sums, whose detailed proofs are shown in the Appendix. �

OPTIMAL ALGORITHMS FOR 2 × n AB GAMES – A GRAPH-PARTITION APPROACH

119

Table 1. The recurrences and their solutions for T(n), T2(n), and T1(n).

Functions Recurrence relations Solutions

T(n) =

3,

13,

T(n 2) 2T (n) n n 1,2
2

- + + - +

R

S
|

T
|

if n = 2

if n = 3

otherwise

(4n 21n 76n 72) / 12,

(4n 21n 82n 105) / 12,

3 2

3 2

+ − +
+ − +

R
S
|

T|

 if n is even

if n is odd

T2(n) =

3,

7,

Min(2T (n) 2n 3,T (n) n + 2),1 2- + - - +

R

S
|

T
| 2 2 2

if n = 3

if n = 4

otherwise

n n 2,

(n n) / 2,

2

2

+ -

+ -

R
S
|

T|

4 18

4 19

) / if n is even

if n is odd

T1(n) =

1,

3,

Min(T (n) n +1,T (n) n ,1 1- + - + -

R

S
|

T
| 2 1 1)

if n = 2

if n = 3

otherwise

n n ,

(n n) / 4,

2

2

+ -

+ -

R
S
|

T|

4 8 4

4 9

) / if n is even

if n is odd

 To determine the number of guesses for 2 × n AB games in the worst case, we

consider the height instead of the external path length of the game tree. We can obtain the
recurrences for H(n), H1(n), and H2(n) by slightly modifying the recurrences T(n), T1(n),
and T2(n) shown in Table 1. Observing Fig. 6, the height of the game tree will be 1 plus
the height of the highest among the five subtrees whose roots are the nodes for the five
classes. Therefore, we have H(n) = Max(0, H2(n), H2(n), H(n − 2), 1) + 1 = Max(H2(n),
H(n − 2)) + 1. We can also obtain this recurrence from the recurrence T(n) = T(n − 2) +
2T2(n) + n2 − n + 1. That is, we can change coefficient 2 associated with the recurrence
function T2(n) to 1, the cost (n2 − n + 1) for each iteration into 1, and the sum operations
between the recurrence functions in the right side to Max function. The recurrences H1(n)
and H2(n) can be obtained in a similar way. The recurrence relations and their solutions
for H(n), H1(n), and H2(n) are shown in the Table 2. Theorem 4 demonstrates the
minimum number of guesses required for 2 × n AB games in the worst case.

Table 2. The recurrences and their solutions for H(n), H1(n), and H2(n).

Functions Recurrence relations Solutions

H(n) =

2,

3,

Max(H(n 2),H (n)) 1,2- +

R

S
|

T
|

if n = 2
if n = 3
otherwise

n/2 + 1

H2(n) =

2,

2,

Min(H (n 2),H (n 2)) 1,1 2− − +

R

S
|

T
|

if n = 3
if n = 4
otherwise

n/2

H1(n) =

1,

2,

Min(H (n 2),H (n 1)) 1,1 1− − +

R

S
|

T
|

if n = 2
if n = 3
otherwise

n/2

Theorem 4 n/2 + 1 guesses are necessary and sufficient for 2 × n AB games in the
worst case.

SHAN-TAI CHEN AND SHUN-SHII LIN

120

Proof: By induction, the recurrences H(n), H1(n), and H2(n) listed in Table 2 can be
solved as collapsing sums, whose detailed proofs are shown in the Appendix. �

We apply the optimum strategy obtained in this section to the 2 × 5 AB game. The

height of the game tree for the strategy used in section 2 for the 2 × 5 AB game is 4,
which has already achieved the best result, H(n) = n/2 + 1 = 5/2 + 1 = 4, in Theorem
4. Nevertheless, the strategy achieved in G2 of Fig. 3, i.e., choosing (2, 3) as the partition
edge, is not the best choice if we consider the external path length. As proven in Theorem
3, if we use the best strategy, i.e., choosing (0, y) or (y, 1) as the partition edge, where y
∈ {2, 3, 4}, then the external path length L2 of the game tree will be 13 instead of 15.
Thus, the total number of guesses required for the 2 × 5 AB game is L0 = (L1 + L2 + L3 +
L4 + L5) + (the total number of edge in G0) = (0 + 13 + 13 + 13 + 1) + 20 = 60. Therefore,
the minimum number of guesses required for G0 = 60/20 = 3, which achieves the result,
(4n3 + 21n2 − 82n + 105)/12n(n − 1) = (4 * 53 + 21 * 52 − 82 * 5 + 105)/(12 * 5 * 4) = 3,
in Theorem 3.

5. CONCLUDING REMARKS

In this paper we have presented a systematic methodology to obtain optimal

strategies for 2 × n AB games in both the worst and expected cases. We have taken
advantage of the properties of game trees, such as their height and external path length,
to calculate the numbers of guesses required in the worst and expected cases for a
deductive game. Furthermore, we have invented a graphic model to represent 2 × n AB
games, and to discover some recursive and isomorphic properties in the graphic model.
Using this approach, we can reduce the search space and obtain the optimal results in
both the worst and expected cases. We summarize this paper’s results for 2 ≤ n ≤ 12 in
Table 3. We hope that the methodologies proposed in this paper will prompt researchers
to study other related problems.

Table 3. The minimum number of guesses required for 2 × n AB games.

Minimum number of guesses
Worst case Expected case

n

n/2 + 1
(4n3 + 21n2

- 76n + 72)/12n(n - 1) if n is even,
(4n3 + 21n2 - 82n + 105)/12n(n - 1) if n is odd

2 2 1.5
3 3 2.166666667
4 3 2.5
5 4 3
6 4 3.433333333
7 5 3.833333333
8 5 4.25
9 6 4.611111111
10 6 5.011111111
11 7 5.354545455
12 7 5.742424242

OPTIMAL ALGORITHMS FOR 2 × n AB GAMES – A GRAPH-PARTITION APPROACH

121

ACKNOWLEDGEMENT

We thank all reviewers for their valuable comments and suggestions. This research

was supported in part by a grant NSC92-2213-E-003-006 from National Science Council,
R.O.C. Our gratitude also goes to the Academic Paper Editing Clinic, National Taiwan
Normal University.

REFERENCES

1. D. E. Knuth, “The computer as mastermind,” Journal of Recreational Mathematics,

Vol. 9, 1976, pp. 1-6.
2. R. W. Irving, “Towards an optimum mastermind strategy,” Journal of Recreational

Mathematics, Vol. 11, 1978-79, pp. 81-87.
3. E. Neuwirth, “Some strategies for mastermind,” Zeitschrift fur Operations Research,

Vol. 26, 1982, pp. 257-278.
4. K. Koyama and T. W. Lai, “An optimal mastermind strategy,” Journal of

Recreational Mathematics, Vol. 25, 1993, pp. 251-256.
5. M. M. Flood, “Sequential search strategies with mastermind variants − Part 1,”

Journal of Recreational Mathematics, Vol. 20, 1988, pp. 105-126.
6. K. I. Ko and S. C. Teng, “On the number of queries necessary to identify a

permutation,” Journal of Algorithms, Vol. 7, 1986, pp. 449-462.
7. Z. X. Chen and C. Cunha, “Finding a hidden code by asking questions,” in

Proceedings of the International Computing and Combinatorics Conference
(COCOON ’96), 1996, pp. 50-55.

8. L. Bento, L. Pereira, and A. Rosa, “Mastermind by evolutionary algorithms,” in
Proceedings of the International Symposium on Applied Computing, 1996, pp.
307-311.

9. J. L. Bernier, C. I. Herraiz, J. J. Merelo, S. Olmeda, and A. Prieto, “Solving
mastermind using gas and simulated annealing: a case of dynamic constraint
optimization,” in Proceedings of Parallel Problem Solving from Nature IV (PPSN IV),
1996, pp. 554-563.

10. J. J. Merelo, J. Carpio, P. Castillo, V. M. Rivas, and G. Romero (GeNeura Team),
“Finding a needle in a haystack using hints and evolutionary computation: the case of
genetic mastermind,” in Proceedings of the Genetic and Evolutionary Computation
Conference late breaking papers, 1999, pp. 184-192.

11. J. R. Roche, “The value of adaptive questions in generalized mastermind,” in
Proceedings of IEEE on the International Symposium on Information Theory, 1997,
pp. 135-135.

12. G. Kabatianski and V. Lebedev, “The mastermind game and the rigidity of the
hamming space,” in Proceedings of IEEE on the International Symposium on
Information Theory, 2000, pp. 375-375.

13. R. Sedgewick, Algorithms, 2nd edition, Addison-Wesley, 1988.
14. D. E. Knuth, “Sorting and searching,” The Art of Computer Programming, Vol. 3,

2nd edition, Addison Wesley, 1998.
15. S. T. Chen, S. H. Hsu, and S. S. Lin, “An optimal strategy for 2 × n AB games,” in

SHAN-TAI CHEN AND SHUN-SHII LIN

122

Proceedings of the 2002 International Computer Symposium on Algorithms and
Computational Molecular Biology, 2002, pp. C2-2.

APPENDIX: THE PROOFS OF THEOREMS 3 AND 4

Theorem 3 The minimum number of guesses required for 2 × n AB games in the
expected case is (4n3 + 21n2 - 76n + 72)/12n(n - 1) if n is even, and it is (4n3 + 21n2 -
82n + 105)/12 n(n - 1) if n is odd.

Proof: We begin by solving the recurrences T(n), T2(n), and T1(n) listed in Table 1.

1. T (n)

1,

3,

Min(T (n 2) n 1,T (n 1) n 1

 if n = 2,

 if n = 3,

), otherwise.
1

1 1

=
− + + − + −

R

S
|

T
|

First, we shall prove by induction that

T1(n) = T1(n - 2) + n + 1
(i.e., Min(T1(n - 2) + n + 1, T1(n - 1) + n - 1) = T1(n - 2) + n + 1).

Basis step:

T1(4) = Min(T1(4 - 2) + 4 + 1, T1(4 - 1) + 4 - 1) = Min(6, 6), and
T1(5) = Min(T1(5 - 2) + 5 + 1, T1(5 - 1) + 5 - 1) = Min(3 + 5 + 1, 6 + 5 - 1)

= Min(9, 10),
so T1(n) = T1(n - 2) + n + 1 is true for n = 4, 5.

Inductive step:
Assume that T1(k) = T1(k - 2) + k + 1 is true for 4 ≤ k < n.
We want to prove that T1(n) = T1(n - 2) + n + 1 is also true.

T (n) Min(T (n 2) n 1,T (n 1) n 1)

 Min(T (n 4) (n 1) (n 1),T (n 3) n (n 1))

 Min(T (n 6) (n 3) (n 1) (n 1),T (n 5) (n 2) n (n 1))

Min(T (2) 5 7 ... (n 1),T (3) 6 8 ... n (n 1)),

Min(T (3) 6 8 ... (n 1),T (2) 5 7 ... n (n 1)),

 if n is even,

 if n is odd.

Min((n 4n 8) / 4,(n 6n

1 1 1

1 1

1 1

1 1

1 1

2 2

= - + + - + -

= - + - + + - + + -

= - + - + - + + - + - + + -

=

+ + + + + + + + + + -

+ + + + + + + + + + -

R
S
T

=

+ - + -16) / 4), if n is even,

Min((n 6n 9) / 4,(n 6n 15) / 4), if n is odd.2 2
+ - + -

R
S
|

T|

Since (n2 + 4n - 8)/4 ≤ (n2 + 6n - 16)/4 and (n2 + 4n - 9)/4 ≤ (n2 + 6n - 15)/4 for n ≥
4, we conclude that T1(n) = T1(n - 2) + n + 1 is true, and that

OPTIMAL ALGORITHMS FOR 2 × n AB GAMES – A GRAPH-PARTITION APPROACH

123

T (n)
(n 4n 8) / 4, if n is even,

(n n 9) / 4, if n is odd.
1

2

2
=

+ -

+ -

R
S
|

T| 4

2. T (n)

3,

7,

Min(2T (n 2) n ,T (n) n

 if n = 3,

 if n = 4,

 otherwise.
2

1 2

=

- + - - + +

R

S
|

T
| 2 3 2 2 2),

Now, we shall prove by induction that T2(n) = 2T1(n - 2) + 2n - 3.
Basis step:

T2(5) = Min(2T1(3) + 10 - 3, T2(3) + 10 + 2) = Min(6 + 10 - 3, 3 + 10 + 2)

= Min(13, 15), and
T2(6) = Min(2T1(4) + 12 - 3, T2(4) + 12 + 2) = Min(12 + 12 - 3, 7 + 12 + 2)

= Min(21, 21),
so T2(n) = 2T1(n - 2) + 2n - 3 is true for n = 5, 6.

Inductive step:
Assume that T2(k) = 2T1(k - 2) + 2k - 3 is true for 5 ≤ k < n.
We want to prove that T2(n) = 2T1(n - 2) + 2n - 3 is also true.

T (n) Min(2T (n 2) 2n 3,T (n 2) 2n + 2)

Min(2T (n 2) 2n 3,2T (n 4) 2(n 2) 3 (2n + 2))

Min(2T (n 2) 2n 3,2T (n 4) 4n 5)

Min(2((n 2) 4(n 2) 8) / 4 2n 3,2((n 4) 4(n 4) 8) / 4 4n 5)), if n is even,

Min(2((n 2) 4(n 2) 9) / 4 2n 3,2((n 4) 4(n 4) 9) / 4 4n 5)), if n is odd.

Min((n 4n 18) / 2,(n 4n 18) / 2), if n is even,

Min((n 4n 19) / 2,(n

2 1 2

1 1

1 1

2 2

2 2

2 2

2 2

= - + - - +

= - + - - + - - +

= - + - - + -

=

- + - - + - - + - - + -

- + - - + - - + - - + -

R
S
|

T|

=

+ - + -

+ - + 4n 19) / 2), if n is odd.-

R
S
|

T|

Therefore, we conclude that T2(n) = 2T1(n - 2) + 2n - 3 is true, and that

T (n)
(n 4n / 2, if n is even,

(n n / 2, if n is odd.
2

2

2
=

+ -

+ -

R
S
|

T|

18)

4 19)

3. T(n)

3,

13,

T(n 2) T (n) n n 1

 if n = 2,

 if n = 3,

 otherwise.
2

2

=

- + + - +

R

S
|

T
|

2 ,

If n > 3 is even, then

T(n) T(n 2) T (n) n n 1

 T(n 2) 2(n 4n 18) / 2 n n 1

 T(n 2) 2n 3n 17

2
2

2 2

2

= − + + − +

= − + + − + − +

= − + + −

2

SHAN-TAI CHEN AND SHUN-SHII LIN

124

 = + − + − −

= + + − + − −

= + − + + − + − −

= + − + + − + − +

= + − + + − + − + − − + − +

= + − +

=

−

=

−

=

−

=

−

=

−

∑

∑

∑

∑ ∑

T(2) [2(n 2i) 3(n 2i) 17]

T(2) [2n 3n 17 8i 8ni 6i]

3 [(n 4) / 2 1](2n 3n 17) [8i 8ni 6i]

3 [(n 4) / 2 1](2n 3n 17) 8 i (8n 6) i

3 [(n 4) / 2 1](2n 3n 17) 8[(n 9n 26n 24) / 24] (8n 6)[(n 6n 8) / 8]

(4n 21n 76n 72) / 12

i 0

(n 4)/2
2

i 0

(n 4)/2
2 2

2

i 0

(n 4)/2
2

2

i 0

(n 4)/2
2

i 0

(n 4)/2

2 3 2 2

3 2

If n is odd, then

T(n) T(n 2) T (n) n n 1

 T(n 2) 2(n 4n 19) / 2 n n 1

 T(n 2) 2n 3n 18

 T(3) [2(n 2i) 3(n 2i) 18]

 (4n 21n 82n 105) / 12

2
2

2 2

2

i 0

(n 5)/2
2

3 2

= − + + − +

= − + + − + − +

= − + + −

= + − + − −

= + − +
=

−

∑

2

Therefore,

T(n)
(4n n) / 2, if n is even,

(4n n) / 2, if n is odd.

3 2

3 2
=

+ - +

+ - +

R
S
|

T|

21 76 72

21 82n 105

The necessary and sufficient conditions can be achieved based on the fact that our
strategy always minimizes the external path length at each stage. Therefore, the
minimum number of guesses required for 2 × n AB games is (4n3 + 21n2 - 76n + 72)/12
if n is even, and (4n3 + 21n2 - 82n + 105)/12 if n is odd. By Lemma 3, because the
number of possible candidates of 2 × n AB games is n(n - 1), we have to divide these
two numbers by n(n - 1) in the expected case. This completes the proof. �

Theorem 4 n/2 + 1 guesses are necessary and sufficient for 2 × n AB games in the
worst case.

Proof: By induction, the recurrences H(n), H1(n), and H2(n) listed in Table 2 can be
solved as collapsing sums, as follows.

1. Since H1(n - 2) ≤ H1(n - 1), H1(n) = Min(H1(n - 2), H1(n - 1)) + 1 = H1(n - 2) + 1 for

n > 3.

OPTIMAL ALGORITHMS FOR 2 × n AB GAMES – A GRAPH-PARTITION APPROACH

125

 H (n) H (n 2) 1

 H (n 4) 1 1

 ...

H (2) (n 2) / 2 (n 2) / 2 1,

H (3) (n 3) / 2 (n 3) / 2 2,

 if n is even,

 if n is odd.

 n / 2

1 1

1

1

1

= - +

= - + +

=

=

+ - = - +

+ - = - +

R
S
T

=

2. H2(n) = Min(H1(n - 2), H2(n - 2)) + 1 for n > 4.

First, we shall prove by induction that

H2(n) = H1(n - 2) + 1.

Basis step:

H2(5) = Min(H1(3) + 1, H2(3) + 1) = Min(3, 3), and
H2(6) = Min(H1(4) + 1, H2(4) +1) = Min(2 + 1, 2 + 1) = Min(3, 3),
so H2(n) = H1(n - 2) + 1 is true for n = 5, 6.

Inductive step:
Assume that H2(k) = H1(k - 2) + 1 is true for 5 ≤ k < n.
We want to prove that H2(n) = H1(n - 2) + 1 is also true.

H2(n) = Min(H1(n - 2), H2(n - 2)) + 1
= Min(n/2/2, H1(n - 4) + 1) + 1
= Min(n/2 - 1, n/2 - 1) + 1.

Therefore, H2(n) = H1(n - 2) + 1 is true and

H2(n) = n/2.

3. H(n) = Max(H(n - 2),H2(n)) + 1 for n > 3.

Now, we shall prove by induction that

H(n) = H2(n) + 1.

Basis step:

H(4) = Max(H(2), H2(4)) +1 = Max(2, 2) + 1, and
H(5) = Max(H(3), H2(5)) +1 = Max(3, 3) + 1,
so H(n) = H2(n) + 1 is true for n = 4, 5.

Inductive step:

Assume that H(k) = H2(k) + 1 is true for 4 ≤ k < n.
We want to prove that H(n) = H2(n) + 1 is also true.

SHAN-TAI CHEN AND SHUN-SHII LIN

126

H(n) = Max(H(n - 2), H2(n)) + 1
= Max(H2(n - 2) + 1, n/2) + 1
= Max(n/2, n/2) + 1.

Therefore, H(n) =H2(n) + 1 is true and

H(n) = n/2 + 1. �

Shan-Tai Chen (陳善泰) was born on September 17, 1965
in Taizhong, Taiwan. He received his B.S. degree from the
Department of Computer Science at Chung-Cheng Institute of
Technology in 1994 and his M.S. degree from the Department of
Information Science and Computer Education at National
Taiwan Normal University in 1997. He was the winner of the
1997 Acer Long Term Award. From 1997 to 2000, he was an
adjunct instructor at the Department of Computer Science of
Chung-Cheng Institute of Technology. Now, he is pursuing Ph.D.
at the Department of Information Science and Computer

Education of National Taiwan Normal University. His research interests include
algorithms, parallel computing, evolutionary algorithms, and game theory.

Shun-Shii Lin (林順喜) was born on June 10, 1959 in
Changhwa, Taiwan, Republic of China. He received the B.S.
degree in Computer Engineering from the National Chiao Tung
University in 1981 and the M.S. and Ph.D. degrees in Computer
Science and Information Engineering from the National Taiwan
University in 1985 and 1990, respectively. From August 1986 to
July 2001, he was on the faculty of the Department of
Information and Computer Education of the National Taiwan
Normal University. He also served as a department head of the
university from August 1994 to July 1996. He was a Visiting

Scholar in the Department of Computer Science, University of Illinois at
Urbana-Champaign in 1993. Starting August 2001 he is a professor and also serves as the
director of the Graduate Institute of Computer Science and Information Engineering of
the National Taiwan Normal University, Taiwan, R.O.C. His research interests include
design and analysis of algorithms, parallel processing, real-time system scheduling, and
artificial intelligence. Dr. Lin is a member of the Institute of Information and Computing
Machinery and the Phi Tau Phi Scholastic Honor Society. He was the winner of the 1996
and 1997 Acer Long Term Award for Outstanding M.S. Thesis Supervision, the winner of
2002 National Science Council Award for Outstanding M.S. Thesis Supervision, R.O.C.
He also obtained the 1994-1998 Research Achievement Award of the National Science
Council of the Republic of China and the 1999 Research Award of the National Taiwan
Normal University.

