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Nimbi is a two-player board game invented by Piet Hein. Twelve tokens, placed on the twelve
vertices of a hexagonal board numbered 1,2,...,9, T, E, D, constitute the initial position of Nimbi
(see FIGURE 1). The board contains twelve rows: four horizontal rows, four diagonal rows in
northeast to southwest direction and four diagonal rows in northwest to southeast direction. The
two players play alternately. Each player at his turn can remove any contiguous portion from a
single row. (Thus 159D may be removed in one move. But if 5 had been removed previously,
then neither 19 nor 1D nor 19D can be removed in a single move, though 1 or 9 or D or even 9D
can.) In Piet Hein’s version, the player making the last move is the loser, his opponent the
winner. We call this version LPL-Nimbi. The other version, in which the player making the last
move wins and his opponent loses, will be called LPW-Nimbi.

The Nimbi Board
FiGuURre 1
Both versions of Nimbi are combinatorial games, which, for our purposes, are defined to
comprise all finite two-player 0-1 games (finite: finite number of positions; 0-1: outcomes are

lose and win only) with perfect information (unlike some card games where information is
hidden) and without chance moves (no dice), in which the players play alternately. A combina-
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torial game is last player losing (LPL) if the player first unable to move wins, and it is last player
winning (LPW) if the player first unable to move loses. In every combinatorial game, either the
first or the second player has a winning strategy. A simple proof of this fact, due to Steinhaus, is
given by Kac [7]. Since it is very short, we reproduce it here. Denote by a,,a;,-.- and by
b, b,,- .- the moves of Al and Beth, respectively. Suppose that Al makes the first move. The fact

that Beth has a winning strategy can be expressed symbolically as follows:
(Va,)(3b,)(Va,)(3b;) -+ (Va,)(3b,) Beth wins.
NEXT

The negation of this statement is obtained by the familiar De Morgan’s rule, and it reads:
(3a,)(¥h,)(3a,)(Vh,)- - - (3a,)(Vb,) Beth does not win.
This, however, is clearly the statement that Al has a winning strategy, and the proof is complete.

Nimbi has a long and dramatic his-
tory. It is the last replique in a dialogue
down the ages.

Probably the oldest game in the world

' Is Nim, which orginated in the Orient

thousands of years ago. it was played
with the most simple material: 12 stones
usually placed in heaps of 3, 4, and 5.
Two players took turns making a move.
A move consisted in removing from any
‘l one of the heaps as many and as few

stones as one wished, i.e., at least one
stone and at most the whole heap. The
alm was to force the opponent to take
the last stone.

Simple in principle but difficult to
master.

It has entertained people all over the
world for thousands of years and kept
them groping for a general principle to
reveal the right moves in each situation.
In 1901, the French-American mathema-
tician Charles Leonard Bouton,
succeeded—by means of a subtie
analysis—to find a very simple principle,
applicable by anyone, telling you
whether a situation was lost or won and
in the latter case which move or moves
would ensure you the final victory. So
the ancient game was turned into a
beautiful mathematical solution but was
destroyed as a game. This destruction
was taken up as a challenge by the
Danish author, scientist and inventor,

Piet Hein, who set himself the task to
revive Nim and give it back its old dig-
nity as an unconquered game. And this
by means of a change that should not
make it less simple in principle but
should bring it outside the reach of the
analysis of Charles Leonard Bouton.
Half a century after Bouton's
assassination of Nim, Piet Hein
succeeded in this strange and difficult
task, the greatest difficuity being to save
the simplicity in principle, at the same
time making it unconquerable by analy-
sis. Piet Hein's new principle was made
the topic of an article by Martin Gardner
in “Scientific American” and in one of
his books about Mathematical Puzzles
and Diversions. During a couple of de-
cades mathematicians have tried to de-
stroy even this new game, attempting to
find a general principle that would cover
all versions of it with varying numbers of
stones, as Bouton's analysis did in re-
spect of Nim. Their efforts hitherto have
been in vain and there are considered to
be fair chances that Piet Hein has
succeeded so thoroughly that his game

will never be destroyed. For the princi- |

ple, if ever one is found, is likely to be so
complicated that the actual experiment-
ing in the single situations proves to be
simpler; meaning, that the playing of it is
not beaten by theory, thus forever re-
assuring its position as a game.

— from the game brochure
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Since both LPL-Nimbi and LPW-Nimbi are combinatorial games, either the first or the second
player must have a winning strategy in each.

The purpose of this note is to prove the following more specific (and perhaps surprising)
result.

THEOREM. In both LPL-Nimbi and LPW-Nimbi, the second player can force a win.

This theorem is a “rare event” because almost all combinatorial games (whether LPL or
LPW) are games in which the first player can force a win (Singmaster [8]). More precisely, if
F(n) is the number of combinatorial games of length not exceeding n for which the first player
has a winning strategy and N(n) is the total number of combinatorial games of length not
exceeding n (where the length of a game is the number of moves from beginning to end), then
limu—owﬂ")/”(")- ]‘

Before proving the theorem we shall summarize briefly some of the basic concepts and
vocabulary of combinatorial games. Let I' be a combinatorial game, § its set of positions, and a,
b two positions in S. Then b is a follower of a if there is a move from a to 5. A position with no
follower is terminal, while an initial position (a position without predecessor) is called a source.
A position g is called an N-position if the Next player can force a win from g irrespective of the
moves of his opponent, or a P-pesition if the Previous player can force a win from g irrespective
of the moves of his opponent. This dichotomy partitions the set § of all positions into the subset
N of N-positions and the subset P of P-positions, where the partition depends on whether I' is
LPL or LPW. It follows that a position is an N-position if and only if it has a follower in P, and
it is a P-position if and only if all its followers are in N. It thus appears that P-positions are
relatively rare. Singmaster’s result is a precise statement of this fact. Our analysis of Nimbi rests
on the determination of a certain subset of P-positions.

First, however, we must define a so-called Sprague-Grundy function g which maps the set of
positions S into the set of nonnegative integers. For each position a € S, the Sprague-Grundy
number g(a) is defined to be the smallest nonnegative integer not appearing in the set { g(5)} of
all followers b of a. Thus, in particular, g(a)=0 if @ is terminal. The importance of g for
combinatorial games stems from the following two facts:

I. P={ac€ S:g(a)=0} if T is an LPW-game,
I1. The g-value of a position in a “disjunctive sum” game is the “nim-sum” of the g-values of
the individual positions.

The second fact needs some explanation. Suppose that two players play a game I consisting of a
finite collection of disjoint combinatorial games T',,T,,...,T,,, also called components, where
each player at his turn selects some component I', and makes a move in it. Then the game T’ is
called the disjunctive sum of the games I',,I,,...,T’,.. The g-value of a position in T is, according
to 1I, the nim-sum of the g-values of the positions in the components I',. To find the nim-sum,
write each g-value to the base 2 as 24,2", then add the a,’s modulo 2 for each value of r without
carrying to obtain a binary sum. For example, the nim-sum of 1, 2 and 3 is 0 (since
1,610,811,=00,, where @ denotes nim-sum) and the nim-sum of 3 and 6 is 5. The nim-sum of
two numbers is 0 if and only if the numbers are the same. (For these and related facts about
combinatorial games, see Conway [1], Smith [9] and Fraenkel [3].)

We are now ready to analyze LPL-Nimbi, using a position catalogue (TABLE la,b) containing
a set of P-positions large enough to prove that the second player in LPL-Nimbi can always force
a win. In TABLE | a position such as 127T is really just a sample of position number 1, because
23ED and other instances represent the same position. The names in TABLE | are designed to
help in recognizing the shape of different samples representing the same position.

We have to verify that each position in TABLE la, b is a P-position. This is illustrated for
position number 19 of TABLE 1b: We summarize in TABLE 2 the 32 possible moves the Next
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Pasition Sample Position Sample
Number Position Name Number Position Name

1 127T two 2's 20 (empty) void

2 2478TD 1,2, straight 3 21 IT two dots

3 1378TE 1,2, crooked 3 22 9ED triangle

4 2578TD  two straight 3’s 23 278D four dots

5 13468T two crooked 3's 24 349ED two dots and triangle

6 13479ED  two 2's and triangle 25 29TED  dot and rhombus

7 4578TED  small kite 26 1568T horse

8 134578TED  big kite 27 12359  letter 4

9 123456789TED  full board 28 I137TED  dot and big bucket

@) 29 125679TD  span with triangle
(©
10 1 onedot
:; ITE three dots
19ED dot and triangle X
13 2689  small bucket A catalogue of P-positions (previous player winning
14 349TED  two dots and rhombus  positions) in the game of Nimbi. Those listed in (a)
15 178TED dot and sled are P-positions for both LPL (last player losing) and
16 24679D dot and horse for LPW (last player winning) versions of the game;
17 124679 wrench those listed in (b) are P-positions only for LPL-
18 1234567 span Nimbi, while those in (c) are P-positions only for
19 1245679TD  span with two triangles LPW-Nimbi.
(b)
TAsBLE 1

player can make by listing the locations he vacates (grouped by type), followed by a P-position
number from TABLE la, b which the Previous player can attain by his countermove. Since the
Previous player can reach a P-position in each of the 32 cases, position number 19 is indeed in
P. To complete the proof, the reader should make a similar verification for each of the
remaining P-positions of TABLE la, b. The full board is position number 9. To see that it is a
P-position in LPL-Nimbi, verify that any move from position number 9 can be countered by a
move t0 one of the P-positions numbered 2,7,8,18 or 19. This completes the proof that
LPL-Nimbi is a second player winning game.

In FIGURE 2 we present a strategy graph whose vertices are P-positions of LPL-Nimbi. Two
vertices @ and b are joined by a downward directed edge (a, b) if for some move of the Next
player from a, the Previous player can respond by moving to b. Since all possible moves from

Next  Attainable Next Attainable Next  Attainable
Type Move P-position Type Move P-position Type Move P-position
—4 4567 12 22s TD 17 singles D 1
=4 159D 12 T 13 T 16
-3's 567 12 69 14 9 1
456 1 25 1 7 18
23 7TD 1 14 12 6 14
s 3s 59D 12 5 17
159 11 x2's 9D 12 4 18
26T 12 59 13 2 12
—2's 9T 14 15 16 1 12
67 11 6T 11
56 5 26 1
45 13
12 12
The 32 possible moves the Next player can make from position number 19 and their rebuttals.
TAsLE 2

24 MATHEMATICS MAGAZINE

t 66 %

NEXT



A fehlt = =-

PREV

00:23
jstor.org

each P-position are taken into account, the graph gives enough information to enable the second
player to win in all cases. Position 9 on top is the source, while position 10 at the bottom is the
terminal position of the graph. The vertices of the strategy graph are precisely the P-positions of
TABLE la, b, except for position 4 which is not used. If the second player adheres to the strategy
indicated by this graph, player 1 can delay losing for at most eight moves. A possible sequence
of such moves, omitting intervening N-positions, is 9—-8—-3—-1-10.

We turn now to LPW-Nimbi. In addition to a direct analysis via P-positions, as we just did
for LPL-Nimbi, LPW games can be analyzed by using property I of the g-function. Also,
property Il can be used for those positions which can be decomposed into a disjunctive sum of
smaller positions. It is easy to verify that the P-positions numbered 1 through 8 (but not 10
through 19) of LPL-Nimbi in TABLE 1 have g-value 0 and are, therefore, also P-positions in
LPW-Nimbi. A list of ten additional P-positions of LPW-Nimbi (which are not P-positions of

A Strategy Graph for LPL-Nimbi A Strategy Graph for LPW-Nimbi

FiGuURE 2 FiGure 3

LPL-Nimbi) is given in TABLE lc. To verify that these are indeed P-positions, we could either
check that the g-value of each position in TABLE lc is 0, or use a process analogous to that used
to prove that position number 19 is in P for LPL-Nimbi. To see that position number 9 is in P
for LPW-Nimbi, verify that any move from it can be countered by a move to one of the
positions 2,4,6,7,8, or 29. This completes (an outline of) the proof that LPW-Nimbi is a
second-player winning game,

FIGURE 3 depicts a strategy graph for LPW-Nimbi, which is constructed analogously to the
strategy graph of FIGURE 2. Position 9 is the source and position 20 is the terminal position.
(Position 5 does not appear.) If the second player sticks to the strategy indicated by the graph,
the first player can delay losing for at most ten moves, a possible sequence of moves being
indicated by the P-positions 9—8—-53—-23-21->20.

For the interested reader we mention finally that LPL games are in general less tractable than
LPW games. See, for example, Conway [1, Ch. 12] and Grundy and Smith [5). Ferguson [2]
found a subclass of tractable LPL games for which there is a winning strategy which is only a
slight modification of the winning strategy of their LPW versions. It turns out that LPL-Nimbi is
not in this class: Ferguson’s condition A3 (which is also necessary) requires that if x is a
component with g-value 1 and if y is a follower of x with g-value 0, then every component of y
has g-value 0 or 1. The empty board (terminal position) has g-value 0. An isolated token has,
therefore, g-value 1, a connected pair (like 37 or ED) has g-value 2. Also g(137TED)=0, since
position 28 in TABLE Ic has g-value O by property I. Since g(1)=1, the nim-sum yields
g(37TED)= 1. Since the follower 37ED, whose components are 37 and ED, satisfies g(37ED)=
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g(37)Dg(ED)=2&2=0, condition A3 does not hold. We remark that even LPW-Nimbi, played
on a board of arbitrary size, appears to be much harder than the classical LPW games, like those
of Guy and Smith [6], because LPW-Nimbi is not a disjunctive sum of disjoint combinatorial

games.
Acknowledgments

The P-positions of the LPW-version of a game similar to Nimbi, but played on a rectangular
board and without the row contiguousness condition, were computed by R. B. Eggleton, A. S.
Fraenkel and B. Rothschild in 1973 for all 2 X n rectangles and 3 X m (m < 5) rectangles. They
called the game 2-dimensional Nim, did not publish the results, and were unaware that D.
Fremlin [4] had examined this game, which he called Nim-squared, at about the same time and,
using a computer, computed all P-positions which fit into a 44 square for both the LPL and
the LPW version. S. -Y. R. Li notified us that 2-dimensional Nim is also being played on a
triangular board.

We thank the editors and the referees for their helpful reorganizing and editing work. Hans
Herda wishes to thank the Weizmann Institute of Science where this work was done. Finally, A.
S. Fraenkel wishes to thank his son Abraham, age 12, for his help in checking out TABLE 1.

Reflerences

[1] ). H. Conway, On Numbers and Games, Academic Press, London, 1976.

[2] T.S. Ferguson, On sums of graph games with last player losing, Internat. J. Game Theory, 3 (1974)
159-167.

(3] A.S. Fraenkel, From Nim to Go, Proc. Symposium on Combinatorial Math. and Optimal Design, J. N.
Srivastava, editor (Colorado State Univ. 1978), North-Holland, The Netherlands, to appear.

[4] D. Fremlin, Well-founded games, Eureka, 36 (1973) 33-37.

5] P. M. Grundy and C. A. B. Smith, Disjunctive games with last player losing, Proc. Cambridge Philos. Soc.,
52 (1956) 527-533.

[6] R.K.Guyand C. A. B. Smith, The g-values of various games, Proc. Cambridge Philos. Soc., 52 (1956) 514
—526.

[71 M. Kac, Hugo Steinhaus—a reminiscence and a tribute, Amer. Math. Monthly, 81 (1974) 572-581.

[8]  D. Singmaster, Almost all games are first-person games, Private communication.

[9] C. A. B. Smith, Compound games with counters, J. Recr. Math,, 1 (1968) 67-77.

Solving an Exponential Equation
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Gerald A. Heuer in [2] studied the equation
= a4+ x\(a+x)/2
| ar=(57)" M
showing that for each a greater than e there is a unique solution with x >a. He gave numerical

results, upper and lower estimates both asymptotic to 2a’~2alna—a, and noted the integer
solution 4'?=8%, It turns out that this equation can be changed to the form

Inu Ina
W a @
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